GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Copenhagen : International Council for the Exploration of the Sea
    Keywords: Fisheries History ; Meeresökologie ; Internationaler Rat für Meeresforschung
    Type of Medium: Book
    Pages: I, 39 S , Ill., graph. Darst
    Series Statement: ICES cooperative research report 253
    DDC: 639.2/2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-17
    Description: Aim Following the biogeographical approach implemented by Longhurst for the epipelagic layer, we propose here to identify a biogeochemical 3-D partition for the mesopelagic layer. The resulting partition characterizes the main deep environmental biotopes and their vertical boundaries on a global scale, which can be used as a geographical and ecological framework for conservation biology, ecosystem-based management and for the design of oceanographic investigations. Location The global ocean. Methods Based on the most comprehensive environmental climatology available to date, which is both spatially and vertically resolved (seven environmental parameters), we applied a combination of clustering algorithms (c-means, k-means, partition around medoids and agglomerative with Ward's linkage) associated with a nonparametric environmental model to identify the vertical and spatial delineation of the mesopelagic layer. Results First, we show via numerical interpretation that the vertical division of the pelagic zone varies and, hence, is not constant throughout the global ocean. Indeed, a latitudinal gradient is found between the epipelagic–mesopelagic and mesopelagic–bathypelagic vertical limits. Second, the mesopelagic layer is shown here to be composed of 13 distinguishable Biogeochemical Provinces. Each province shows a distinct range of environmental conditions and characteristic 3-D distributions. Main conclusions The historical definition of the mesopelagic zone is here revisited to define a 3-D geographical framework and characterize all the deep environmental biotopes of the deep global ocean. According to the numerical interpretation of mesopelagic boundaries, we reveal that the vertical division of the zone is not constant over the global ocean (200–1,000 m) but varies between ocean basin and with latitude. We also provide evidence of biogeochemical division of the mesopelagic zone that is spatially structured in a similar way than the epipelagic in the shallow waters but varies in the deep owing to a change of the environmental driving factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Eutrophication and climate change will affect habitats of species and more generally, the structure and functioning of ecosystems. We used a three‐dimensional, coupled hydrodynamic‐biogeochemical model to investigate potential future changes in size and location of potential habitats of marine species during the 21st century in a large, eutrophicated brackish sea (the Baltic Sea, northern Europe). We conducted scenario projections under the combined impact of nutrient load and climate change. Possible future changes of the eutrophication state of this sea were also assessed through two policy‐relevant indicators. The results imply a physiologically more stressful environment for marine species by the end of the 21st century: volumes of higher salinity water become more hypoxic/anoxic and the volumes of low salinity, oxic water increase. For example, these results impact and reduce cod reproductive habitats. The decrease is mainly climate change induced in the Baltic basins less directly influenced by inflows of saline, oxic water to the Baltic Sea (E Gotland and Gdansk Basins). In basins more directly influenced by such inflows (Arkona and Bornholm Basins), the combined effect from climate change and nutrient loads is of importance. The results for the eutrophication state indicators clearly indicate a more eutrophic sea than at present without a rigorous nutrient reduction policy, that is, the necessity to implement the Baltic Sea Action Plan. The multidisciplinary, multiscenario assessment strategy presented here provides a useful concept for the evaluation of impacts from cumulative stresses of changing climate and socioeconomic pressures on future eutrophication indicators and habitats of marine species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...