GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 19, No. 5 ( 2009-05), p. 795-803
    Abstract: Characterizing patterns of genetic variation within and among human populations is important for understanding human evolutionary history and for careful design of medical genetic studies. Here, we analyze patterns of variation across 443,434 single nucleotide polymorphisms (SNPs) genotyped in 3845 individuals from four continental regions. This unique resource allows us to illuminate patterns of diversity in previously under-studied populations at the genome-wide scale including Latin America, South Asia, and Southern Europe. Key insights afforded by our analysis include quantifying the degree of admixture in a large collection of individuals from Guadalajara, Mexico; identifying language and geography as key determinants of population structure within India; and elucidating a north–south gradient in haplotype diversity within Europe. We also present a novel method for identifying long-range tracts of homozygosity indicative of recent common ancestry. Application of our approach suggests great variation within and among populations in the extent of homozygosity, suggesting both demographic history (such as population bottlenecks) and recent ancestry events (such as consanguinity) play an important role in patterning variation in large modern human populations.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2009
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 19, No. 5 ( 2009-05), p. 838-849
    Abstract: Past demographic changes can produce distortions in patterns of genetic variation that can mimic the appearance of natural selection unless the demographic effects are explicitly removed. Here we fit a detailed model of human demography that incorporates divergence, migration, admixture, and changes in population size to directly sequenced data from 13,400 protein coding genes from 20 European-American and 19 African-American individuals. Based on this demographic model, we use several new and established statistical methods for identifying genes with extreme patterns of polymorphism likely to be caused by Darwinian selection, providing the first genome-wide analysis of allele frequency distributions in humans based on directly sequenced data. The tests are based on observations of excesses of high frequency–derived alleles, excesses of low frequency–derived alleles, and excesses of differences in allele frequencies between populations. We detect numerous new genes with strong evidence of selection, including a number of genes related to psychiatric and other diseases. We also show that microRNA controlled genes evolve under extremely high constraints and are more likely to undergo negative selection than other genes. Furthermore, we show that genes involved in muscle development have been subject to positive selection during recent human history. In accordance with previous studies, we find evidence for negative selection against mutations in genes associated with Mendelian disease and positive selection acting on genes associated with several complex diseases.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2009
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2005
    In:  Genome Research Vol. 15, No. 12 ( 2005-12), p. 1809-1819
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 15, No. 12 ( 2005-12), p. 1809-1819
    Abstract: Many domestic dog breeds have originated through fixation of discrete mutations by intense artificial selection. As a result of this process, markers in the proximity of genes influencing breed-defining traits will have reduced variation (a selective sweep) and will show divergence in allele frequency. Consequently, low-resolution genomic scans can potentially be used to identify regions containing genes that have a major influence on breed-defining traits. We model the process of breed formation and show that the probability of two or three adjacent marker loci showing a spurious signal of selection within at least one breed (i.e., Type I error or false-positive rate) is low if highly variable and moderately spaced markers are utilized. We also use simulations with selection to demonstrate that even a moderately spaced set of highly polymorphic markers (e.g., one every 0.8 cM) has high power to detect regions targeted by strong artificial selection in dogs. Further, we show that a gene responsible for black coat color in the Large Munsterlander has a 40-Mb region surrounding the gene that is very low in heterozygosity for microsatellite markers. Similarly, we survey 302 microsatellite markers in the Dachshund and find three linked monomorphic microsatellite markers all within a 10-Mb region on chromosome 3. This region contains the FGFR3 gene, which is responsible for achondroplasia in humans, but not in dogs. Consequently, our results suggest that the causative mutation is a gene or regulatory region closely linked to FGFR3 .
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2005
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 28, No. 4 ( 2018-04), p. 423-431
    Abstract: Over a decade ago, the Atacama humanoid skeleton (Ata) was discovered in the Atacama region of Chile. The Ata specimen carried a strange phenotype—6-in stature, fewer than expected ribs, elongated cranium, and accelerated bone age—leading to speculation that this was a preserved nonhuman primate, human fetus harboring genetic mutations, or even an extraterrestrial. We previously reported that it was human by DNA analysis with an estimated bone age of about 6–8 yr at the time of demise. To determine the possible genetic drivers of the observed morphology, DNA from the specimen was subjected to whole-genome sequencing using the Illumina HiSeq platform with an average 11.5× coverage of 101-bp, paired-end reads. In total, 3,356,569 single nucleotide variations (SNVs) were found as compared to the human reference genome, 518,365 insertions and deletions (indels), and 1047 structural variations (SVs) were detected. Here, we present the detailed whole-genome analysis showing that Ata is a female of human origin, likely of Chilean descent, and its genome harbors mutations in genes ( COL1A1 , COL2A1 , KMT2D , FLNB , ATR , TRIP11 , PCNT ) previously linked with diseases of small stature, rib anomalies, cranial malformations, premature joint fusion, and osteochondrodysplasia (also known as skeletal dysplasia). Together, these findings provide a molecular characterization of Ata's peculiar phenotype, which likely results from multiple known and novel putative gene mutations affecting bone development and ossification.
    Type of Medium: Online Resource
    ISSN: 1088-9051 , 1549-5469
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2018
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 21, No. 8 ( 2011-08), p. 1294-1305
    Abstract: High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2011
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2005
    In:  Genome Research Vol. 15, No. 11 ( 2005-11), p. 1496-1502
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 15, No. 11 ( 2005-11), p. 1496-1502
    Abstract: Large-scale SNP genotyping studies rely on an initial assessment of nucleotide variation to identify sites in the DNA sequence that harbor variation among individuals. This “SNP discovery” sample may be quite variable in size and composition, and it has been well established that properties of the SNPs that are found are influenced by the discovery sampling effort. The International HapMap project relied on nearly any piece of information available to identify SNPs—including BAC end sequences, shotgun reads, and differences between public and private sequences—and even made use of chimpanzee data to confirm human sequence differences. In addition, the ascertainment criteria shifted from using only SNPs that had been validated in population samples, to double-hit SNPs, to finally accepting SNPs that were singletons in small discovery samples. In contrast, Perlegen's primary discovery was a resequencing-by-hybridization effort using the 24 people of diverse origin in the Polymorphism Discovery Resource. Here we take these two data sets and contrast two basic summary statistics, heterozygosity and F ST , as well as the site frequency spectra, for 500-kb windows spanning the genome. The magnitude of disparity between these samples in these measures of variability indicates that population genetic analysis on the raw genotype data is ill advised. Given the knowledge of the discovery samples, we perform an ascertainment correction and show how the post-correction data are more consistent across these studies. However, discrepancies persist, suggesting that the heterogeneity in the SNP discovery process of the HapMap project resulted in a data set resistant to complete ascertainment correction. Ascertainment bias will likely erode the power of tests of association between SNPs and complex disorders, but the effect will likely be small, and perhaps more importantly, it is unlikely that the bias will introduce false-positive inferences.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2005
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...