GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Co-Action Publishing  (1)
  • Nature  (1)
Document type
  • Articles  (2)
Publisher
Years
  • 1
    Publication Date: 2021-06-29
    Description: Polymetallic nodule fields provide hard substrate for sessile organisms on the abyssal seafloor between 3000 and 6000 m water depth. Deep-seabed mining targets these mineral-rich nodules and will likely modify the consumer-resource (trophic) and substrate-providing (non-trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food-web integrity remains unclear. Here, we use seafloor imagery and published literature to develop highly-resolved trophic and non-trophic interaction webs for the Clarion-Clipperton Fracture Zone (CCZ, central Pacific Ocean) and the Peru Basin (PB, South-East Pacific Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock-down effects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identified stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food-web integrity and that their absence will likely result in reduced local benthic biodiversity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-11
    Description: On-going climate warming is causing a dramatic loss of sea-ice in the Arctic Ocean and it is projected that the Arctic Ocean will become seasonally ice-free by 2040. Many studies of local Arctic food webs now exist and with this review paper we aim to synthesize these into a large-scale assessment of the current status of knowledge on the structure of various Arctic marine food webs, and their response to climate change, and to sea-ice retreat in particular. Key drivers of ecosystem change and potential consequences for ecosystem functioning and Arctic marine food webs are identified along the sea-ice gradient with special emphasis on the following regions: seasonally ice free Barents and Chukchi Seas, loose ice pack zone of the Polar Front (PF) and Marginal Ice Zone (MIZ), and permanently sea-ice covered high Arctic. Finally, we identify gaps existing in the knowledge of different Arctic marine food webs and provide recommendations for future studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...