GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Integral field spectroscopy. ; Electronic books.
    Description / Table of Contents: Containing lectures from the seventeenth Winter School of the Canary Islands Astrophysics Institute, this book explores 3D spectroscopy techniques and data. Simultaneously storing both spectral and spatial information, 3D spectroscopy offers a new way to tackle astrophysical problems, and opens up new lines of research.
    Type of Medium: Online Resource
    Pages: 1 online resource (289 pages)
    Edition: 1st ed.
    ISBN: 9780511766794
    Series Statement: Canary Islands Winter School of Astrophysics Series
    DDC: 522/.67
    Language: English
    Note: Intro -- Half title -- Title -- Copyright -- Contents -- Contributors -- Participants -- Preface -- Acknowledgements -- Abbreviations -- 1. Introductory review and technical approaches -- 1.1 Preface -- 1.2 Introductory review -- 1.2.1 Conceptual outline -- Principle of operation and terminology -- Methods of image dissection: spatial sampling -- Detectors and spectrographs -- Spectral resolution and wavelength coverage -- Coupling the IFU to the spectrograph -- Examples of real IFUs -- Extracting the spectra -- Data representation, data formats -- Data analysis -- 1.2.2 Comparison with classical techniques -- A posteriori advantage, pointing -- Slit e.ects -- Atmospheric refraction -- Spatial binning -- Differential spectrophotometry -- Crowded .eld 3D spectroscopy -- Ultra-deep faint object 3D spectroscopy -- 1.3 A brief history of 3D spectroscopy -- 1.4 Technical approaches -- 1.4.1 Optical fibers -- 1.4.2 Lens arrays -- 1.4.3 Lens array - fiber hybrids -- 1.4.4 Slicers -- 1.4.5 Non-IFS 3D instruments -- 1.4.6 3D detectors -- 1.4.7 Special techniques -- Multi-slit masks -- Nod-shu.e 3D spectroscopy -- 1.4.8 Figure-of-merit -- 1.5 Acknowledgments -- REFERENCES -- 2. Observational procedures and data reduction -- 2.1 Introduction -- 2.2 Background -- 2.3 Observing strategies -- 2.3.1 IFUs versus other instruments -- 2.3.2 The observing process -- Overview -- Acquisition -- Object and sky spectra -- Integration times -- Dithering and mosaicking -- Flat-fielding -- Wavelength calibration -- Telluric calibration -- Flux calibration -- Detector bias -- Dark current -- Summary of observing strategies -- 2.4 Sampling images -- 2.4.1 The Sampling Theorem -- 2.4.2 Undersampling -- 2.4.3 Sampling images -- 2.4.4 Practical issues -- Finite pixel size -- Noise -- Practical interpolants -- Irregular sampling. , 2.4.5 Summary and application to astronomical data -- 2.5 Overview of data reduction issues -- 2.5.1 Common steps -- 2.5.2 Detector linearity and saturation -- 2.5.3 Detector bias subtraction -- 2.5.4 Consolidating and formatting the data -- 2.5.5 Flat-fielding -- 2.5.6 Cosmic ray and bad pixel correction -- 2.5.7 Instrumental background -- 2.5.8 Spatial calibration -- 2.5.9 Wavelength calibration -- 2.5.10 Extraction -- 2.5.11 Sky subtraction -- 2.5.12 Telluric correction -- 2.5.13 Flux calibration -- 2.5.14 Reconstruction in 3D -- 2.5.15 Atmospheric dispersion -- 2.5.16 Dithering and mosaicking -- 2.5.17 Spatial binning -- 2.5.18 Summary of data reduction issues -- 2.6 Data reduction process -- 2.6.1 Reduction sequence -- 2.6.2 Error propagation -- 2.6.3 Data quality -- 2.6.4 File storage format -- 2.6.5 Formats for reduced data -- 2.6.6 Summary of the data reduction process -- 2.7 Acknowledgements -- REFERENCES -- 3. 3D spectroscopy instrumentation -- 3.1 Fundamental challenges and considerations -- 3.1.1 The detector limit I: six into two dimensions -- 3.1.2 Merit functions -- 3.1.3 Why spectral resolution is so important -- 3.1.4 The detector limit II: read noise -- 3.2 Grating-dispersed spectrographs -- 3.2.1 Basic spectrograph design -- 3.2.2 Dispersive elements -- Re.ection gratings -- Transmission gratings -- 3.2.3 VPH grating operation and design -- Blazed VPH gratings -- Unusual VPH grating modes -- 3.2.4 Summary of implications for 3D spectrograph design -- 3.2.5 Coupling formats and methods: overview -- 3.2.6 Direct fibre coupling -- Information loss and stability gain with fibres -- Telecentricity -- Causes of FRD -- Quality versus quantity -- Image reconstruction and registration -- Summary of instruments -- 3.2.7 Fibre + lenslet coupling -- 3.2.8 Slicer coupling -- 3.2.9 Direct lenslet coupling. , 3.2.10 Filtered multi-slit (FMS) coupling -- 3.2.11 Multi-object configurations -- 3.2.12 Summary of considerations -- Information selection and reformatting -- Coverage versus purity -- Sky subtraction -- 3.3 Interferometry I: Fabry-Perot interferometry -- 3.3.1 Basic concepts and field widening -- 3.3.2 FP monochromators -- 3.3.3 FP spectrometers -- 3.3.4 3D FP spectrophotometers -- Grating-dispersed FPI -- Pupil-imaging FPI -- 3.3.5 Sky stability -- 3.3.6 Examples of instruments -- 3.4 Interferometry II: spatial heterodyne spectroscopy -- 3.5 Summary of existing instruments -- 3.6 The extended-source domain -- 3.7 Future instruments -- 3.7.1 Ground-based instruments on 10m telescopes -- 3.7.2 Ground-based instruments on 30-50m-class telescopes -- 3.7.3 Space-borne instruments -- 3.7.4 Summary of future instruments -- Acknowledgements -- REFERENCES -- 4. Analysis of 3D data -- 4.1 Introduction -- 4.1.1 Presentation and scope -- 4.1.2 Data analysis -- 4.2 Data, noises, biases and artifacts -- 4.2.1 Where is the signal? -- 4.2.2 Noises -- 4.2.3 Biases or systematic errors -- Systematic error: example -- 4.2.4 Artifacts -- The artifacts and the resampling of data -- 4.3 Image reconstruction and datacube visualization -- 4.3.1 From a cube to an image -- 4.3.2 Datacube visualization -- 4.4 Getting rid of atmospheric effects and undesired backgrounds -- 4.4.1 Sky emission, zodiacal light and thermal background -- 4.4.2 Subtracting a background -- 4.4.3 Where things can get even more complicated -- Beware of instrumental e.ects -- The case of atmospheric absorption features -- Atmospheric refraction -- 4.5 From a collection of datacubes to a single one -- 4.5.1 Drizzling -- 4.5.2 The deep-field approach -- Relative positioning -- Relative normalization -- Ready to co-add? -- A simple illustrated example -- 4.5.3 Mosaicking. , Differences with the deep-.eld approach -- Relative registration and normalization of the exposures -- Simple illustrated examples -- 4.6 Smoothing and binning -- 4.6.1 Smoothing data -- 4.6.2 Binning -- 4.7 Data mining and crowded-field spectrophotometry -- 4.7.1 Data mining -- 4.7.2 Crowded-field spectrophotometry -- 4.8 Model fitting -- 4.8.1 The example of stellar continuum fitting -- 4.8.2 A step-by-step example of emission-line fitting -- Systems and constraints -- Initial conditions -- Fitting the data -- Determining the error bars -- The all-in-one and ultimate solutions -- 4.9 Conclusions -- REFERENCES -- 5. Science motivation for integral field spectroscopy and Galactic studies -- 5.1 Science motivation -- 5.1.1 Motivation for integral field spectroscopy -- 5.1.2 Fundamental considerations based on technical constraints -- 5.1.3 Ideal and unsuitable objects for integral field spectroscopy -- 5.1.4 Examples of integral field spectroscopic studies -- 5.1.5 Galactic versus extragalactic science -- 5.1.6 Overview of Galactic science -- 5.2 The black hole in the Galactic Centre -- Excursion: history of supermassive black holes -- Excursion: line of argument for proving the Galactic Centre black hole -- 5.2.1 The nuclear cluster of the Milky Way: star formation and velocity dispersion in the central 0.5parsec -- Excursion: Stellar spectra of early- and late-type stars in the infrared -- Excursion: from velocity to mass I: the virial theorem -- Excursion: from velocities to mass II: Bahcall-Tremaine estimator -- 5.2.2 The dark mass concentration in the central parsec of the Milky Way -- 5.2.3 Stellar dynamics in the Galactic Centre: proper motions and anisotropy -- Excursion: from velocity to mass III: the Leonard-Merrit estimator -- Excursion: from accelerations and orbits to mass. , 5.2.4 A geometric determination of the distance to the Galactic Centre -- 5.2.5 SINFONI in the Galactic Centre: young stars and infrared flares in the central light month -- Excursion: SrgA* does not move -- Excursion: hot spots on the last stable orbit -- 5.2.6 Again: SINFONI in the Galactic Centre: young stars and infrared flares in the central light month -- Excursion: the Eddington luminosity -- 5.3 The stellar population in the Galactic Centre -- 5.3.1 The nuclear cluster of the Milky Way: star formation and velocity dispersion in the central 0.5parsec -- Excursion: stellar population modelling -- 5.3.2 The dark mass concentration in the central parsec of the Milky Way -- Excursion: The paradox of youth -- 5.3.3 Stellar dynamics in the Galactic Centre: proper motions and anisotropy -- 5.3.4 Stellar disk in the Galactic Centre: a remnant of a dense accretion disk? and the stellar cusp around the supermassive black hole in the Galactic Centre -- 5.3.5 SINFONI in the Galactic Centre: young stars and infrared flares in the central light month -- 5.4 Star formation -- Excursion: star formation in a nutshell -- Excursion: T Tauri and RW Auriga stars -- 5.4.1 A near-infrared spectral imaging study of T Tau -- Excursion: molecular hydrogen lines in the infrared -- Excursion: H2 line diagnostics -- 5.4.2 Spatially resolved imaging spectroscopy of T Tauri -- Excursion: microjets in pre-main sequence stars -- 5.4.3 The RW Aur microjet: testing MHD disc wind models -- 5.4.4 Sub-arcsecond morphology and kinematics of the DG Tauri jet in the [OI]6300 line and DG Tau: a shocking jet? -- 5.4.5 The three-dimensional structure of HH 32 from GMOS IFU spectroscopy -- Excursion: line ratio diagnostics in the optical -- Excursion: high-mass star formation -- 5.4.6 Collimated molecular jets from high-mass young stars: IRAS 18151-1208. , 5.4.7 GEMINI multi-object spectrograph integral field unit spectroscopy of the 167--317 (LV2) proplyd in Orion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...