GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Unterführung ; Stahlbau ; Wellblech ; Teilsicherheitsbeiwert ; Bemessung ; Richtlinie ; Unterführung ; Wellblech ; Bemessung ; Teilsicherheitsbeiwert ; Stahlbau
    Type of Medium: Online Resource
    Pages: Online-Ressource (PDF-Datei: 111 S., 3.218 KB) , Ill., graph. Darst.
    Series Statement: Berichte der Bundesanstalt für Strassenwesen 78
    DDC: 624
    RVK:
    Language: German
    Note: Systemvoraussetzungen: Acrobat reader. , Zsfassungen in dt. u. engl. Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  Tellus A: Dynamic meteorology and oceanography, 54 (3). pp. 299-316.
    Publication Date: 2019-09-23
    Description: Due to the ephemeral nature of the atmospheric conditions over the Baltic Sea, the flow field is highly variable, and thus, changes in the resulting circulation and upwelling are difficult to observe. However, three-dimensional models, forced by realistic atmospheric conditions and river runoff, have reached such a state of accuracy that the highly fluctuating current field and the associated evolution of the temperature and salinity field can be described. In this work, effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea are investigated. Changes in the characteristics of the large-scale atmospheric wind field over the central and eastern North Atlantic can be described by the North Atlantic Oscillation (NAO). The NAO is related to the strength and geographical position of weather systems as they cross the North Atlantic and thus has a direct impact on the climate in Europe. To relate the local wind field over the Baltic Sea to the large-scale atmospheric circulation, we defined a Baltic Sea Index (BSI), which is the difference of normalised sea level pressures between Oslo in Norway and Szczecin in Poland. The NAO is significantly related to the BSI. Furthermore, the BSI is highly correlated with the storage variation of the Baltic Sea and the volume exchange through the Danish Sounds. Based on three-dimensional model calculations, it is shown that different phases of the NAO during winter result in major changes of horizontal transports in the deep basins of the Baltic Sea and in upwelling along the coasts as well as in the interior of the basins. During NAO+ phases, strong Ekman currents are produced with increased up- and downwelling along the coasts and associated coastal jets, whereas during NAO− phases, Ekman drift and upwelling are strongly reduced, and the flow field can almost entirely be described by the barotropic stream function. The general nature of the mean circulation in the deep basins of the Baltic Sea, obtained from a 10-yr model run, can be described by the depth integrated vorticity balance derived from the transport equation for variable depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Gebr. Bornträger
    In:  Gebr. Bornträger, Berlin, Stuttgart, 446 pp.
    Publication Date: 2020-03-24
    Type: Book , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  Tellus A: Dynamic meteorology and oceanography, 48 . pp. 324-341.
    Publication Date: 2019-01-21
    Description: The free surface version of the GFDL model is used to study inflow and outflow through the Danish Straits, which connect the Baltic with the North Sea. Three problems are addressed: (i) the piling up of inflowing water in the Arkona basin; (ii) the transport ratios between Belt and Sound; (iii) the dominance of hydraulic or geostrophic control. Model results show that a cyclonic eddy (dome) is formed by the inflowing saline water that prevents this water from passing rapidly into the Bornholm basin. This eddy is enforced with increasing inflow due to a sea level difference between Kattegat and western Baltic. If density gradients along the straits are weak and the flow is dominantly driven by sea level differences between Kattegat and Baltic, the well-known ratio of 70% : 30% for the transports through Belt and Sound are confirmed. Strong density gradients can change this ratio considerably, especially in the outflow case, when the light water of the Baltic flows against the heavier water of the Kattegat. Under variable wind conditions, no fixed ratio is found. The flow in the Straits is geostrophically controlled; however, the strong baroclinic density field does not allow us to derive the transport simply from sea level inclination.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...