GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Predictions of the effects of climate change on the extent of forests, savannas and deserts are usually based on simple response models derived from actual vegetation distributions. In this review, we show two major problems with the implicitly assumed straightforward cause–effect relationship. Firstly, several studies suggest that vegetation itself may have considerable effects on regional climate implying a positive feedback, which can potentially lead to large-scale hysteresis. Secondly, vegetation ecologists have found that effects of plants on microclimate and soils can cause a microscale positive feedback, implying that critical precipitation conditions for colonization of a site may differ from those for disappearance from that site. We argue that it is important to integrate these nonlinearities at disparate scales in models to produce more realistic predictions of potential effects of climate change and deforestation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 (Wigley et al. 1991), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2-SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4–3.8 Pg C y−1 during the 1990s, rising to 3.7–8.6 Pg C y−1 a century later. Simulations including climate change show a reduced sink both today (0.6–3.0 Pg C y−1) and a century later (0.3–6.6 Pg C y−1) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate-induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate change resulting, primarily, from differences in the way that modelled global NPP responds to a changing climate. The simulations illustrate, however, that the magnitude of possible biospheric influences on the carbon balance requires that this factor is taken into account for future scenarios of atmospheric CO2 and climate change.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We assess the role of changing natural (volcanic, aerosol, insolation) and anthropogenic (CO2 emissions, land cover) forcings on the global climate system over the last 150 years using an earth system model of intermediate complexity, CLIMBER-2. We apply several datasets of historical land-use reconstructions: the cropland dataset by Ramankutty & Foley (1999) (R&F), the HYDE land cover dataset of Klein Goldewijk (2001), and the land-use emissions data from Houghton & Hackler (2002). Comparison between the simulated and observed temporal evolution of atmospheric CO2 and δ13CO2 are used to evaluate these datasets. To check model uncertainty, CLIMBER-2 was coupled to the more complex Lund–Potsdam–Jena (LPJ) dynamic global vegetation model.In simulation with R&F dataset, biogeophysical mechanisms due to land cover changes tend to decrease global air temperature by 0.26°C, while biogeochemical mechanisms act to warm the climate by 0.18°C. The net effect on climate is negligible on a global scale, but pronounced over the land in the temperate and high northern latitudes where a cooling due to an increase in land surface albedo offsets the warming due to land-use CO2 emissions.Land cover changes led to estimated increases in atmospheric CO2 of between 22 and 43 ppmv. Over the entire period 1800–2000, simulated δ13CO2 with HYDE compares most favourably with ice core during 1850–1950 and Cape Grim data, indicating preference of earlier land clearance in HYDE over R&F. In relative terms, land cover forcing corresponds to 25–49% of the observed growth in atmospheric CO2. This contribution declined from 36–60% during 1850–1960 to 4–35% during 1960–2000. CLIMBER-2-LPJ simulates the land cover contribution to atmospheric CO2 growth to decrease from 68% during 1900–1960 to 12% in the 1980s. Overall, our simulations show a decline in the relative role of land cover changes for atmospheric CO2 increase during the last 150 years.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...