GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Focal adhesion kinase (FAK) and the related proline-rich tyrosine kinase 2 (PYK2) are non-receptor protein tyrosine kinases that transduce extracellular signals through the activation of Src family kinases and are highly enriched in neurones. To further elucidate the regulation of FAK and PYK2 in nervous tissue, we investigated their distribution in brain subcellular fractions and analysed their translocation between membrane and cytosolic compartments. We have found that FAK and PYK2 are present in a small membrane-associated pool and a larger cytosolic pool in various neuronal compartments including nerve terminals. In intact nerve terminals, inhibition of Src kinases inhibited the membrane association of FAK, but not of PYK2, whereas tyrosine phosphatase inhibition sharply increased the membrane association of both FAK and PYK2. Disruption of the actin cytoskeleton was followed by a decrease in the membrane-associated pool of FAK, but not of PYK2. For both kinases, a significant correlation was found between autophosphorylation and membrane association. The data indicate that FAK and PYK2 are present in nerve terminals and that the membrane association of FAK is regulated by both phosphorylation and actin assembly, whereas that of PKY2 is primarily dependent on its phosphorylation state.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: VAMP/synaptobrevin (SYB), an integral membrane protein of small synaptic vesicles, is specifically cleaved by tetanus neurotoxin and botulinum neurotoxins B, D, F, and G and is thought to play an important role in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. Potential phosphorylation sites for various kinases are present in SYB sequence. We have studied whether SYB is a substrate for protein kinases that are present in nerve terminals and known to modulate neurotransmitter release. SYB can be phosphorylated within the same vesicle by endogenous Ca2+/calmodulin-dependent protein kinase II (CaMKII) associated with synaptic vesicles. This phosphorylation reaction occurs rapidly and involves serine and threonine residues in the cytoplasmic region of SYB. Similarly to CaMKII, a casein kinase II (CasKII) activity copurifying with synaptic vesicles is able to phosphorylate SYB selectively on serine residues of the cytoplasmic region. This phosphorylation reaction is markedly stimulated by sphingosine, a sphingolipid known to activate CasKII and to inhibit CaMKII and protein kinase C. The results show that SYB is a potential substrate for protein kinases involved in the regulation of neurotransmitter release and open the possibility that phosphorylation of SYB plays a role in modulating the molecular interactions between synaptic vesicles and the presynaptic membrane.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Immunophilins are ubiquitous enzymes responsible for proline isomerisation during protein synthesis and for the chaperoning of several membrane proteins. These activities can be blocked by the immunosuppressants cyclosporin A, FK506 and rapamycin. It has been shown that all three immunosuppressants have neurotrophic activity and can modulate neurotransmitter release, but the molecular basis of these effects is currently unknown. Here, we show that synapsin I, a synaptic vesicle-associated protein, can be purified from Torpedo cholinergic synaptosomes through its affinity to cyclophilin B, an immunophilin that is particularly abundant in brain. The interaction is direct and conserved in mammals, and shows a dissociation constant of about 0.5 µmin vitro. The binding between the two proteins can be disrupted by cyclosporin A and inhibited by physiological concentrations of ATP. Furthermore, cyclophilin B co-localizes with synapsin I in rat synaptic vesicle fractions and its levels in synaptic vesicle-containing fractions are decreased in synapsin knockout mice. These results suggest that immunophilins are involved in the complex protein networks operating at the presynaptic level and implicate the interaction between cyclophilin B and synapsins in presynaptic function.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The Ca2+-sensor protein S100A1 was recently shown to bind in vitro to synapsins, a family of synaptic vesicle phosphoproteins involved in the regulation of neurotransmitter release. In this paper, we analyzed the distribution of S100A1 and synapsin I in the CNS and investigated the effects of the S100A1/synapsin binding on the synapsin functional properties. Subcellular fractionation of rat brain homogenate revealed that S100A1 is present in the soluble fraction of isolated nerve endings. Confocal laser scanning microscopy and immunogold immunocytochemistry demonstrated that S100A1 and synapsin codistribute in a subpopulation (5–20%) of nerve terminals in the mouse cerebral and cerebellar cortices. By forming heterocomplexes with either dephosphorylated or phosphorylated synapsin I, S100A1 caused a dose- and Ca2+-dependent inhibition of synapsin-induced F-actin bundling and abolished synapsin dimerization, without affecting the binding of synapsin to F-actin, G-actin or synaptic vesicles. These data indicate that: (i) synapsins and S100A1 can interact in the nerve terminals where they are coexpresssed; (ii) S100A1 is unable to bind to SV-associated synapsin I and may function as a cytoplasmic store of monomeric synapsin I; and (iii) synapsin dimerization and interaction with S100A1 are mutually exclusive, suggesting an involvement of S100A1 in the Ca2+-dependent regulation of synaptic vesicle trafficking.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cytokines are extracellular mediators that have been reported to affect neurotransmitter release and synaptic plasticity phenomena when applied in vitro. Most of these effects occur rapidly after the application of the cytokines and are presumably mediated through the activation of protein phosphorylation processes. While many cytokines have an inflammatory action, interleukin-6 (IL-6) has been found to have a neuroprotective effect against ischaemia lesions and glutamate excitotoxicity, and to increase neuronal survival in a variety of experimental conditions. In this paper, the functional effects of IL-6 on the spread of excitation visualized by dark-field/infrared videomicroscopy in rat cortical slices and on glutamate release from cortical synaptosomes were analysed and correlated with the activation of the STAT3, mitogen-activated protein kinase ERK (MAPK/ERK) and stress-activated protein kinase/cJun NH2-terminal kinase (SAPK/JNK) pathways. We have found that IL-6 depresses the spread of excitation and evoked glutamate release in the cerebral cortex, and that these effects are accompanied by a stimulation of STAT3 tyrosine phosphorylation, an inhibition of MAPK/ERK activity, a decreased phosphorylation of the presynaptic MAPK/ERK substrate synapsin I and no detectable effects on SAPK/JNK. The effects of IL-6 were effectively counteracted by treatment of the cortical slices with the tyrosine kinase inhibitor lavendustin A. The inhibitory effects of IL-6 on glutamate release and on the spread of excitation in the rat cerebral cortex indicate that the protective effect of IL-6 on neuronal survival could be mediated by a downregulation of neuronal activity, release of excitatory neurotransmitters and MAPK/ERK activity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that activates Src family kinases via SH2- and SH3-mediated interactions. Specific FAK isoforms (FAK+), responsive to depolarization and neurotransmitters, are enriched in neurons. We analyzed the interactions of endogenous FAK+ and recombinant FAK+ isoforms containing amino acid insertions (boxes 6,7,28) with an array of SH3 domains and the c-Src SH2/SH3 domain tandem. Endogenous FAK+ bound specifically to the SH3 domains of c-Src (but not n-Src), Fyn, Yes, phosphtidylinositol-3 kinase, amphiphysin II, amphiphysin I, phospholipase Cγ and NH2-terminal Grb2. The inclusion of boxes 6,7 was associated with a significant decrease in the binding of FAK+ to the c-Src and Fyn SH3 domains, and a significant increase in the binding to the Src SH2 domain, as a consequence of the higher phosphorylation of Tyr-397. The novel interaction with the amphiphysin SH3 domain, involving the COOH-terminal proline-rich region of FAK, was confirmed by coimmunoprecipitation of the two proteins and a closely similar response to stimuli affecting the actin cytoskeleton. Moreover, an impairment of endocytosis was observed in synaptosomes after internalization of a proline-rich peptide corresponding to the site of interaction. The data account for the different subcellular distribution of FAK and Src kinases and the specific regulation of the transduction pathways linked to FAK activation in the brain and implicate FAK in the regulation of membrane trafficking in nerve terminals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...