GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-14
    Description: Importance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections.
    Description: BMBF
    Description: JSPS KAKENHI
    Description: NSFC
    Keywords: ddc:551.48 ; Climate change ; Global hydrological models ; River discharge projections ; Model evaluation ; Model performance ; Model weighting ; Credibility of projections
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 47 (2002), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY 1. Climate warming is now widely recognised as a major factor influencing ecological processes in terrestrial, marine and freshwater habitats. Here, we investigated how a recent period of warm springs and summers has affected the population dynamics of various cyclopoid copepods in a central European lake. We compared (i) the duration of the period when the species were present in the water column, and (ii) their annual peak density in a period dominated by cool summers (1980–91) and one dominated by warm summers (1992–99).2. The copepods under investigation were (i) Thermocyclops oithonoides, (ii) Mesocyclops leuckarti and (iii) Acanthocyclops robustus. These species differ in their thermal demand and seasonal phenology. Therefore, we hypothesised that enhanced summer warming would produce species-specific responses.3. The active phase of the copepods was usually prolonged both in spring and autumn. The earlier emergence of T. oithonoides (May in the warm years, July in the cool years) was probably related to high water temperature in late spring. The later onset of winter diapause in all species may have been coupled to raised temperature in late summer and autumn.4. The annual peak abundance of the two thermophiles M. leuckarti and T. oithonoides increased significantly in the warm period. In the latter case, the increase was probably because of the early start to population growth. In contrast, M. leuckarti probably responded primarily to mid-summer heat waves, in that its development time was likely to be short. We speculate that the increase in population size of both species resulted from the development of an additional generation (three instead of two cohorts per year). In contrast to these thermophiles, the coexisting A. robustus, which is adapted to a broader temperature range, did not respond noticeably to the warming trend.5. In general, the nature of these responses to summer warming varied substantially among species, and depended on the detailed seasonal patterning of the warming. Our findings thus support the hypotheses that single species are sensitive indicators of climate change, and that the seasonal timing of warming is crucial in the context of climate–ecosystem relationships.6. Moreover, our results add to the body of evidence that climate warming produces shifts in the seasonal phenology of aquatic and terrestrial organisms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...