GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-25
    Description: Background: Trophic interactions are key processes, which determine the ecological function and performance of organisms. Many decapod crustaceans feed on plant material as a source for essential nutrients, e.g. polyunsaturated fatty acids. Strictly herbivorous feeding appears only occasionally in marine decapods but is common in land crabs. To verify food preferences and to establish trophic markers, we studied the lipid and fatty acid composition of the midgut glands of two marine crab species (Grapsus albolineatus and Percnon affine), one semi-terrestrial species (Orisarma intermedium, formerly Sesarmops intermedius), and one terrestrial species (Geothelphusa albogilva) from Taiwan. Results: All species showed a wide span of total lipid levels ranging from 4 to 42% of the dry mass (%DM) in the marine P. affine and from 3 to 25%DM in the terrestrial G. albogilva. Triacylglycerols (TAG) were the major storage lipid compound. The fatty acids 16:0, 18:1(n-9), and 20:4(n-6) prevailed in all species. Essential fatty acids such as 20:4(n-6) originated from the diet. Terrestrial species also showed relatively high amounts of 18:2(n-6), which is a trophic marker for vascular plants. The fatty acid compositions of the four species allow to clearly distinguish between marine and terrestrial herbivorous feeding due to significantly different amounts of 16:0, 18:1(n-9), and 18:2(n-6). Conclusions: Based on the fatty acid composition, marine/terrestrial herbivory indices were defined and compared with regard to their resolution and differentiating capacity. These indices can help to reveal trophic preferences of unexplored species, particularly in habitats of border regions like mangrove intertidal flats and estuaries.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE INC
    In:  EPIC3Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, ELSEVIER SCIENCE INC, 215, pp. 31-38, ISSN: 1096-4959
    Publication Date: 2017-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE INC
    In:  EPIC3Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, ELSEVIER SCIENCE INC, 162, pp. 62-69, ISSN: 1532-0456
    Publication Date: 2014-04-28
    Description: The intracellular ubiquitin-proteasome system is a key regulator of cellular processes involved in the controlled degradation of short-living or malfunctioning proteins. Certain diseases and cellular dysfunctions are known to arise from the disruption of proteasome pathways. Trace metals are recognized stressors of the proteasome system in vertebrates and plants, but their effects on the proteasome of invertebrates are not well understood. Since marine invertebrates, and particularly benthic crustaceans, can be exposed to high metal levels, we studied the effects of in vitro exposure to Hg2 +, Zn2 +, Cu2 +, and Cd2 + on the activities of the proteasome from the claw muscles of lobsters (Homarus gammarus) and crabs (Cancer pagurus). The chymotrypsin like activity of the proteasome of these two species showed different sensitivity to metals. In lobsters the activity was significantly inhibited by all metals to a similar extent. In crabs the activities were severely suppressed only by Hg2 + and Cu2 + while Zn2 + had only a moderate effect and Cd2 + caused almost no inhibition of the crab proteasome. This indicates that the proteasomes of both species possess structural characteristics that determine different susceptibility to metals. Consequently, the proteasome-mediated protein degradation in crab C. pagurus may be less affected by metal pollution than that of the lobster H. gammarus.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE INC
    In:  EPIC3Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, ELSEVIER SCIENCE INC, ISSN: 1532-0456
    Publication Date: 2019-09-09
    Description: Ingestion of microplastics can impair nutrition of marine invertebrates. In a laboratory study, we tested whether microplastics affect ingestion rates and gastrointestinal enzyme activities in the marine isopod Idotea emarginata. Isopods were fed for eight days with one out of four different food formulations: natural food (the brown alga Fucus vesiculosus) or synthetic diet consisting of freeze-dried algal powder embedded in agarose, both, with or without microplastic particles (fluorescent polymethyl methacrylate, 10–100 μm) at a concentration of 40 items per mg of food. The isopods accepted both types of food but consumed significantly more (average 3.1-fold) of the agar based synthetic food. I. emarginata responded to the reduced content of digestible organic matter in the synthetic food by a compensatory adjustment of the ingestion rates. Addition of microplastics had no effect on ingestion rates in natural food whereas the feeding rates for synthetic food varied in response to microplastics. Similarly, activity patterns of digestive enzymes, particularly those of esterases, changed significantly in the treatment with synthetic food. Isopods fed with synthetic food alone showed elevated esterase activities in the gut while those isopods fed with synthetic food and microplastics showed elevated esterase activities in the midgut gland but not in the gut. Apparently, not the exposure to microplastic alone, but the combined effects of reduced nutrient availability and microplastic ingestion caused considerable biochemical reactions in the digestive organs of the isopods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...