GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 127, No. 23 ( 2016-06-09), p. 2791-2803
    Abstract: Developed a targeted sequencing platform covering 63 genes linked to heritable bleeding, thrombotic, and platelet disorders. The ThromboGenomics platform provides a sensitive genetic test to obtain molecular diagnoses in patients with a suspected etiology.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 134, No. 23 ( 2019-12-5), p. 2070-2081
    Abstract: The authors provide evidence of a novel association between transcription factor IKZF5, one of the IKAROS family proteins, and thrombocytopenia with decreased alpha granules, thus significantly extending our understanding of the gene defects leading to inherited thrombocytopenia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 134, No. 23 ( 2019-12-5), p. 2082-2091
    Abstract: This paper reports on the use of a high-throughput diagnostic genetic screening for coagulation, platelet, or thrombotic disorders in a series of more than 2000 patients.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 504-504
    Abstract: The Rare Diseases Pilot study of the 100,000 Genomes Project had two objectives. Firstly, to identify the DNA variants underlying unresolved Mendelian disorders. Secondly, to develop an accredited framework for delivering whole genome sequencing (WGS) results across a national healthcare system. From February 2014 to June 2017, 13,037 individuals with a rare disease and their relatives were recruited at 57 National Health Service (NHS) hospitals in the UK and 26 non-UK hospitals using standardized eligibility criteria for 12 rare disease domains. This cohort includes cases with haematology (n=1021), immunology (n=1359) and haemostasis disorders (n=1169). With informed consent, clinical and laboratory data were collected and coded into a single research database using Human Phenotype Ontology (HPO) terms and 13,037 samples of DNA were Illumina WGS analysed to clinical standard at a mean depths 〉 30X in all samples and 90% of the reference genome was covered at 19X minimum in all samples. The pilot resource contains over 165 million unique variants with 91.5%, 8,5% and 5.6% single nucleotide variants (SNVs), short insertions / deletions and large deletions of the 10,258 genetically independent samples with 47% of variants previously unobserved in large scale genome datasets (e.g. TopMED, gnomAD, UK10K). Across all domains 2,067 unique diagnostic-grade genes (DGGs) were curated to clinical standards to support pertinent finding reporting by 12 multi-disciplinary teams (MDTs) with domain-relevant clinical and genetic expertise. Over 1,300 MDT reports assigning pathogenic or likely pathogenic causal variants have been returned to referring clinicians, with the diagnostic yield ranging from 1.6 to 53.8%, depending on the extent of genetic screening pre-enrolment and the importance of the non-genetic component of the disorder (e.g. in immune disorders). About 30% of the causal variants identified have never been reported (absent from the Human Gene Mutation Database v.2018.1); interestingly, 51 variants have been reported in 11 DGGs linked to phenotypes belonging to different domains. A comparison with standard whole exome sequencing results revealed WGS to have at least 12.5% superiority in sensitivity for detecting known pathogenic variants. For the haematology, immunology and haemostasis domains 330 causal variants were reported in 83 DGGs, revealing novel modes of inheritance (Sivapalaratnam et al Blood 2016), and entire new clinical phenotypes linked to mutations in ABCC4, GNE, KDSR and STIM1 amongst other DGGs. The genotype and HPO-coded phenotypes of all pilot cases were analysed with BeviMed, a rapid and scalable Bayesian association test (Greene et al AJHG 2017) to identify causal variants in hitherto unknown genes. This identified more than 30 genes with posterior probabilities indicating a high likelihood of being implicated in underlying as yet unresolved Mendelian disorders. Results from co-segregation and cell biology studies have already corroborated this statistical inference and 15 novel genes acquired DGG status. Including a new method for the analysis of the 'gene-regulatory' elements we also identified an example of a causal variant in such an element controlling the function of both GATA1 and HDAC6 resulting in a severe syndromic pathology characterized by abnormal erythropoiesis and megakaryopoiesis. In conclusion, the pilot of the 100,000 Genomes Project has shown the feasibility of using WGS across a national health system, such as the NHS, to deliver a molecular diagnosis for patients with rare inherited diseases and how a national genotype/HPO-coded phenotype resource provides a powerful platform for the identification of novel diagnostic-grade genes. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 129, No. 4 ( 2017-01-26), p. 520-524
    Abstract: Variants in GP1BB can cause autosomal dominant macrothrombocytopenia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1156-1156
    Abstract: Inherited defects of platelet function disorders are rare and difficult to diagnose due to lack of standardized platelet tests. An aspirin-like platelet defect is characterised by reduced thromboxane A2 (TXA2) signalling due to a defect in the arachidonic acid (AA) pathway in platelets. Patients with aspirin-like defect present with mild to moderate bleeding symptoms and impaired platelet aggregation responses to AA and ADP. This is similar to the irreversible effect of aspirin on platelets, which is mediated through inhibition of prostaglandin H synthase-1 also known as cyclooxygenase-1 (PTGS1/COX1). We for the first time report platelet function disorders due to autosomal recessive inheritance of variants in PTGS1. In a total of 3563 cases with bleeding disorders, comprising 1169 whole genome sequenced probands of the BRIDGE-BPD study and 2394 panel sequenced index cases of the ThromboGenomics cohort, we identified 15 unrelated cases of each cohort with an aspirin-like platelet function defect. Two of these cases had rare a variants in PTGS1, the gene encoding COX-1, which catalyses the conversion of arachidonic acid to prostaglandin H2. The first case presented with epistaxis and peri-operative bleeding. She had reduced platelet aggregation responses to arachidonic acid, ADP, collagen and epinephrine. Incubation of control blood with collagen resulted in enhanced levels of thromboxane B2, PGD2, PGE2, 11-HETE and 15-HETE which was absent in the index case.We identified a homozygous missense variant in PTGS1, p.Trp322Ser with a Combined Annotation Dependant Depletion Score (CADD) of 31.0. This variant was absent from GnomAD. The variant co-segregated in an autosomal recessive inheritance mode, with aspirin-like defect phenotype in the seven family members who were investigated. PTGS1 was not expressed on the platelets by western blot. Immunophenotyping demonstrated absence on the platelet surface but presence on neutrophils. The second case of the presented with menorrhagia, nosebleeds, easy bleeding and bruising. She had reduced aggregation responses to arachidonic acid, ADP, collagen and epinephrine. We identified two variants in cis: a splice-donor variant (g. 125133553 T 〉 A), CADD 24.3; and an upstream non-coding variant (g. 125132069 C 〉 G), CADD 16.63. The frequency of these variants were respectively; 1.7 x 10-5 and 8 x 10-3 in GnomAD. Platelet RNA and protein expression studies in the propositus revealed alternative splicing with the generation of a smaller protein due the splice variant. In contrast, the non coding variant had no effect on promoter or enhancer activity and therefore, is likely benign. In this case, the mode of inheritance is autosomal dominant with a dominant negative effect, which has been reported previously. For the other 13 cases of the Bridge-BPD study we also interrogated the non-coding space and interactors in the arachidonic acid pathway, none of which had genetic variants explaining the phenotype. For the 15 ThromboGenomics cohort cases because they were sequenced on targeted platform similar investigations could not take place. These cases could have a non inherited cause for the platelet defect or it is also permissible that variation in a hitherto undefined pathways unique to individual cases might be causal. In conclusion, we for the first time report autosomal recessive inheritance of variants in PTGS1 as cause for a rare inherited bleeding disorder. The effect of the mutation are selective loss of expression of PTGS1 within platelets and decreased enzyme function. Two previous reports demonstrated autosomal dominant inheritance. The first demonstrated autosomal dominant inheritance of variants in PTGS1 as modifier in a well characterized family with haemophilia A and platelet function disorder (Nance et al JTH 2016). The second reported rare heterozygous variants in PTGS1 in two cases with a bleeding tendency which was not further specified in the report (Bastida et al Haematologica 2018). Disclosures Laffan: Pfizer: Honoraria; Roche: Consultancy, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1359-1359
    Abstract: The incidence of inherited rare bleeding, thrombotic and platelet disorders (BPD) is estimated to be 200-250 per million individuals. For at least 15% of these cases the molecular basis is unresolved (Lentaigne et al, Blood, 2016). We aim to discover the genetic basis of these unresolved BPDs, to improve diagnosis and treatment. In addition this will increase our knowledge of the molecular pathways of megakaryopoiesis, haemostasis and thrombus formation. For this purpose we have established a prospective BPD cohort, which at time of writing consist of 1,378 probands, 123 affected relatives and 41 unaffected relatives. After consenting, all these individuals have been precisely phenotyped using human phenotype ontology (HPO) terms (Westbury et al, Genome Medicine, 2015). This includes clinical parameters, laboratory results and pedigree history. Ten thousand DNA samples from the BPD cases, patients with other rare diseases and their close relatives, who were all enrolled in the NIHR BioResource were analysed by whole genome sequencing (Turro et al, Science Trans. Med, 2016). We applied phenotype similarity regression to identify statistical associations between presence of a coding variants with consequences in a gene and similarity to a latent HPO-coded phenotype (Greene et al, AJHG, 2016). We identified a strong statistical association between presence of 8 unique rare coding DNA variants with consequences in GP1BB and 8 probands with macrothrombocytopenia (SimReg posterior probability = 0.93 with inferred characteristic phenotype preferentially included the term "Increased mean platelet volume", Fisher's p = 2.10 x 10-6). We sought to validate these discovery findings through identification of further cases in the cohorts of 75 and 301 macrothrombocytopenia cases from the ThromboGenomics consortium (Simeoni et al, Blood, 2016) and the Nagoya Medical Center in Japan, respectively. Three additional variants in GP1BB were identified in 9 individuals from 8 pedigrees. Systematic review of the sequencing results of 27 BPD genes (including GP1BA, GP9) implicated in thrombocytopenia in 10 probands did not reveal any alternative variants that could plausibly explaining the phenotype. In aggregate 59 affected macrothrombocytopenia cases were observed in 16 pedigrees with 9 unique GP1BB variants, with the Y113C variant, which was observed in 6 pedigrees thought to be a Japanese founder variant. The means of the count and volume of platelets of the probands was 104.6 x109/l (range 47-172 x109/l) and 12.6 fL, respectively. Inspection of blood smears revealed anisocytosis with a small number of giant platelets and electron micrograph images were reminiscent of those from platelets of a patient with Bernard Soulier syndrome (BSS). In 11 pedigrees measurement by cytometry showed reduced levels of the GpIb/IX/V complex on the platelets of 8 genetically independent individuals and bleeding diathesis was reported in 7 of 16 pedigrees. Altogether, we identified 9 unique variants in the GP1BB gene, which encodes the 202 amino acid long Type 1 transmembrane protein GpIb▢, which together with GpIba, GpV and GpIX form the receptor complex for von Willebrand Factor on megakaryocytes and platelets. They result in a disruption of the canonical methionine start codon, another resulting in a premature stop at residue 46, 5 missense variants at L16P, G43W, T68M, Y113C and L132Q, a deletion removing PAL at residues 79-81, and finally a frameshift in the codon for residue A150 leading to an alternative open reading frame predicted to result in a protein of 193 instead of 202 amino acids long. All 9 variants but the G43W one, which was observed in one of the 61,000 ExAC subjects were unobserved in the ExAC database. In summary before our study there was only one isolated report of a Gp1ba-R42C variant assumed to be causal of macrothrombocytopenia, but no segregation study was performed to corroborate this observation. Our findings in 16 pedigrees with 59 subjects with macrothrombocytopenia provide robust statistical and convincing co-segregation evidence that some variants in GP1BB if present as a single alleleexert a dominant effect on the count and volume of platelets, resulting in some pedigrees in a bleeding diathesis rejecting the dogma that BSS is mainly an autosomal recessive disorder. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 136, No. 17 ( 2020-10-22), p. 1956-1967
    Abstract: Gray platelet syndrome (GPS) is a rare recessive disorder caused by biallelic variants in NBEAL2 and characterized by bleeding symptoms, the absence of platelet α-granules, splenomegaly, and bone marrow (BM) fibrosis. Due to the rarity of GPS, it has been difficult to fully understand the pathogenic processes that lead to these clinical sequelae. To discern the spectrum of pathologic features, we performed a detailed clinical genotypic and phenotypic study of 47 patients with GPS and identified 32 new etiologic variants in NBEAL2. The GPS patient cohort exhibited known phenotypes, including macrothrombocytopenia, BM fibrosis, megakaryocyte emperipolesis of neutrophils, splenomegaly, and elevated serum vitamin B12 levels. Novel clinical phenotypes were also observed, including reduced leukocyte counts and increased presence of autoimmune disease and positive autoantibodies. There were widespread differences in the transcriptome and proteome of GPS platelets, neutrophils, monocytes, and CD4 lymphocytes. Proteins less abundant in these cells were enriched for constituents of granules, supporting a role for Nbeal2 in the function of these organelles across a wide range of blood cells. Proteomic analysis of GPS plasma showed increased levels of proteins associated with inflammation and immune response. One-quarter of plasma proteins increased in GPS are known to be synthesized outside of hematopoietic cells, predominantly in the liver. In summary, our data show that, in addition to the well-described platelet defects in GPS, there are immune defects. The abnormal immune cells may be the drivers of systemic abnormalities such as autoimmune disease.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...