GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: mBio, American Society for Microbiology, Vol. 10, No. 1 ( 2019-02-26)
    Abstract: Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia. IMPORTANCE Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mSphere, American Society for Microbiology, Vol. 6, No. 3 ( 2021-06-30)
    Abstract: Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro . Here, we show that in vivo , mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis , M. marinum , or M. leprae . In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo , translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals. IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis .
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 77, No. 2 ( 2003-01-15), p. 1245-1256
    Abstract: The live, attenuated vaccine simian immunodeficiency virus SIVmac239Δnef efficiently protects rhesus macaques against infection with wild-type SIVmac but occasionally causes CD4 + T-cell depletion and progression to simian AIDS (SAIDS). Virus recovered from a vaccinated macaque (Rh1490) that progressed to SAIDS had acquired an additional deletion in the nef gene, resulting in a frameshift that restored the original nef open reading frame (R. I. Connor, D. C. Montefiori, J. M. Binley, J. P. Moore, S. Bonhoeffer, A. Gettie, E. A. Fenamore, K. E. Sheridan, D. D. Ho, P. J. Dailey, and P. A. Marx, J. Virol. 72:7501-7509, 1998). Intravenous inoculation of the Rh1490 viral isolate into four naive rhesus macaques induced CD4 + T-cell depletion and disease in three out of four animals within 2 years, indicating a restoration of virulence. A DNA fragment encompassing the truncated nef gene amplified from the Rh1490 isolate was inserted into the genetic backbone of SIVmac239. The resulting clone, SIVmac239-Δ2nef, expressed a Nef protein of approximately 23 kDa, while the original SIVmac239Δnef clone expressed a shorter protein of 8 kDa. The revertant form of Nef did not cause downregulation of CD4, CD3, or major histocompatibility complex class I. The infectivity of SIVmac239-Δ2nef was similar to that of SIVmac239Δnef in single-cycle assays using indicator cell lines. In contrast, SIVmac239-Δ2nef replicated more efficiently than SIVmac239Δnef in peripheral blood mononuclear cell (PBMC) cultures infected under unstimulated conditions. The p27 Gag antigen levels in SIVmac239-Δ2nef-infected cultures were still lower than those obtained with wild-type SIVmac239, consistent with a partial recovery of Nef function. The transcriptional activity of long terminal repeat (LTR)-luciferase constructs containing the nef deletions did not differ markedly from that of wild-type LTR. Introduction of a premature stop codon within Nef-Δ2 abolished the replicative advantage in PBMCs, demonstrating that the Nef-Δ2 protein, rather than the structure of the U3 region of the LTR, was responsible for the increase in viral replication. Taken together, these results show that SIV with a deletion in the nef gene can revert to virulence and that expression of a form of nef with multiple deletions may contribute to this process by increasing viral replication.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2003
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: mBio, American Society for Microbiology, Vol. 11, No. 3 ( 2020-06-30)
    Abstract: It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 “don’t eat me” signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis . Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents. IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 191, No. 18 ( 2009-09-15), p. 5648-5656
    Abstract: Data from the genome sequence of the aerobic, marine bacterium Roseovarius nubinhibens ISM were interpreted such that 3-sulfolactate would be degraded as a sole source of carbon and energy for growth via a novel bifurcated pathway including two known desulfonative enzymes, sulfoacetaldehyde acetyltransferase (EC 2.3.3.15) (Xsc) and cysteate sulfo-lyase (EC 4.4.1.25) (CuyA). Strain ISM utilized sulfolactate quantitatively with stoichiometric excretion of the sulfonate sulfur as sulfate. A combination of enzyme assays, analytical chemistry, enzyme purification, peptide mass fingerprinting, and reverse transcription-PCR data supported the presence of an inducible, tripartite sulfolactate uptake system (SlcHFG), and a membrane-bound sulfolactate dehydrogenase (SlcD) which generated 3-sulfopyruvate, the point of bifurcation. 3-Sulfopyruvate was in part decarboxylated by 3-sulfopyruvate decarboxylase (EC 4.1.1.79) (ComDE), which was purified. The sulfoacetaldehyde that was formed was desulfonated by Xsc, which was identified, and the acetyl phosphate was converted to acetyl-coenzyme A by phosphate acetyltransferase (Pta). The other portion of the 3-sulfopyruvate was transaminated to ( S )-cysteate, which was desulfonated by CuyA, which was identified. The sulfite that was formed was presumably exported by CuyZ (TC 9.B.7.1.1 in the transport classification system), and a periplasmic sulfite dehydrogenase is presumed. Bioinformatic analyses indicated that transporter SlcHFG is rare but that SlcD is involved in three different combinations of pathways, the bifurcated pathway shown here, via CuyA alone, and via Xsc alone. This novel pathway involves ComDE in biodegradation, whereas it was discovered in the biosynthesis of coenzyme M. The different pathways of desulfonation of sulfolactate presumably represent final steps in the biodegradation of sulfoquinovose (and exudates derived from it) in marine and aquatic environments.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2009
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...