GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Cell Biology (ASCB)  (2)
Material
Publisher
  • American Society for Cell Biology (ASCB)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Society for Cell Biology (ASCB) ; 2003
    In:  Molecular Biology of the Cell Vol. 14, No. 2 ( 2003-02), p. 477-490
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 14, No. 2 ( 2003-02), p. 477-490
    Abstract: Macroautophagy is a catabolic membrane trafficking phenomenon that is observed in all eukaryotic cells in response to various stimuli, such as nitrogen starvation and challenge with specific hormones. In the yeast Saccharomyces cerevisiae, the induction of autophagy involves a direct signal transduction mechanism that affects membrane dynamics. In this system, the induction process modifies a constitutive trafficking pathway called the cytoplasm-to-vacuole targeting (Cvt) pathway, which transports the vacuolar hydrolase aminopeptidase I, from the formation of small Cvt vesicles to the formation of autophagosomes. Apg1 is one of the proteins required for the direct signal transduction cascade that modifies membrane dynamics. Although Apg1 is required for both the Cvt pathway and autophagy, we find that Apg1 kinase activity is required only for Cvt trafficking of aminopeptidase I but not for import via autophagy. In addition, the data support a novel role for Apg1 in nucleation of autophagosomes that is distinct from its catalytic kinase activity and imply a qualitative difference in the mechanism of autophagosome and Cvt vesicle formation.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 2003
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Cell Biology (ASCB) ; 2004
    In:  Molecular Biology of the Cell Vol. 15, No. 5 ( 2004-05), p. 2189-2204
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 15, No. 5 ( 2004-05), p. 2189-2204
    Abstract: The Cvt pathway is a biosynthetic transport route for a distinct subset of resident yeast vacuolar hydrolases, whereas macroautophagy is a nonspecific degradative mechanism that allows cell survival during starvation. Yet, these two vacuolar trafficking pathways share a number of identical molecular components and are morphologically very similar. For example, one of the hallmarks of both pathways is the formation of double-membrane cytosolic vesicles that sequester cargo before vacuolar delivery. The origin of the vesicle membrane has been controversial and various lines of evidence have implicated essentially all compartments of the endomembrane system. Despite the analogies between the Cvt pathway and autophagy, earlier work has suggested that the origin of the engulfing vesicle membranes is different; the endoplasmic reticulum is proposed to be required only for autophagy. In contrast, in this study we demonstrate that the endoplasmic reticulum and/or Golgi complex, but not endosomal compartments, play an important role for both yeast transport routes. Along these lines, we demonstrate that Berkeley bodies, a structure generated from the Golgi complex in sec7 cells, are immunolabeled with Atg8, a structural component of autophagosomes. Finally, we also show that none of the yeast t-SNAREs are located at the preautophagosomal structure, the presumed site of double-membrane vesicle formation. Based on our results, we propose two models for Cvt vesicle biogenesis.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 2004
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...