GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (1)
Material
Publisher
  • American Physiological Society  (1)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 1998
    In:  Journal of Applied Physiology Vol. 85, No. 2 ( 1998-08-01), p. 731-737
    In: Journal of Applied Physiology, American Physiological Society, Vol. 85, No. 2 ( 1998-08-01), p. 731-737
    Abstract: Prostacyclin (or epoprostenol), an arachidonic acid metabolite, is an effective treatment for patients with primary pulmonary hypertension. Interruption of chronic prostacyclin infusion can result in recurrent symptoms of dyspnea and fatigue. The etiology of this phenomenon is unknown. We hypothesized that sympathoadrenal activation could lead to increased vascular tone after abrupt termination of the infusion. To evaluate this effect, we monitored six chronically instrumented, awake sheep during and after infusion of prostacyclin. Prostacyclin decreased mean arterial pressure (MAP) by 14% and increased cardiac output by 33%. After the infusion ceased, MAP rebounded 23% above baseline, and cardiac output decreased by 28% from peak values within 10 min. We were unable to demonstrate an increase in norepinephrine levels after cessation of prostacyclin, nor did α-adrenergic blockade affect postinfusion hemodynamics. However, plasma renin activity increased 〉 10-fold at peak infusion and remained elevated for up to 2 h after discontinuation of prostacyclin. Coinfusion of the angiotensin II-receptor antagonist L-158,809 resulted in complete abrogation of the postcessation rise in MAP. We conclude that renin-angiotensin system activation is primarily responsible for systemic hypertension occurring after abrupt cessation of prostacyclin infusion in sheep and that angiotensin II receptor blockade prevents this response. Our data do not support a role for sympathetic nervous system activation in the systemic pressor response after prostacyclin infusion.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1998
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...