GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (1)
Material
Publisher
  • American Physiological Society  (1)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2003
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 285, No. 6 ( 2003-12), p. H2355-H2363
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 285, No. 6 ( 2003-12), p. H2355-H2363
    Abstract: Assessment of early ultrastructural development and cell-cycle regulation in human cardiac tissue is significantly hampered by the lack of a suitable in vitro model. Here we describe the possible utilization of human embryonic stem cell (ES) lines for investigation of these processes. With the use of the embryoid body (EB) differentiation system, human ES cell-derived cardiomyocytes at different developmental stages were isolated and their histomorphometric, ultrastructural, and proliferative properties were characterized. Histomorphometric analysis revealed an increase in cell length, area, and length-to-width ratio in late-stage EBs ( 〉 35 days) compared with early (10–21 days) and intermediate (21–35 days) stages. This was coupled with a progressive ultrastructural development from an irregular myofibrillar distribution to an organized sarcomeric pattern. Cardiomyocyte proliferation, assessed by double labeling with cardiac-specific antibodies and either [ 3 H]thymidine incorporation or Ki-67 immunolabeling, demonstrated a gradual withdrawal from cell cycle. Hence, the percentage of positively stained nuclei in early-stage cardiomyocytes ([ 3 H]thymidine: 60 ± 10%, Ki-67: 54 ± 23%) decreased to 36 ± 7% and 9 ± 16% in intermediate-stage EBs and to 〈 1% in late-stage cardiomyocytes. In conclusion, a reproducible temporal pattern of early cardiomyocyte proliferation, cell-cycle withdrawal, and ultrastructural maturation was noted in this model. Establishment of this unique in vitro surrogate system may allow to examine the molecular mechanisms underlying these processes and to assess interventions aiming to modify these properties. Moreover, the detailed characterization of the ES cell-derived cardiomyocyte may be crucial for the development of future cell replacement strategies aiming to regenerate functional myocardium.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2003
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...