GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Oceans Vol. 103, No. C10 ( 1998-09-15), p. 21469-21479
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 103, No. C10 ( 1998-09-15), p. 21469-21479
    Abstract: Mechanical energy terms are calculated from moored current meter data in the Cape Verde Frontal Zone (about 20°N, 25°W) and compared with those derived from a mesoscale model of this frontal region. The model is of the Bleck and Boudra [1981] type with isopycnal coordinates. An initially zonal jet, representing the Canary Current, is allowed to develop under the influence of baroclinic and barotropic instability processes. We find reasonable agreement in magnitudes, somewhat smaller in the model, and similar distributions in the vertical. This leads to the conclusion that the energy transfer terms from the model can be expected to be sufficiently close to reality. Determination of the transfer terms confirms that the energy transfer in the zone is dominated by baroclinic instability processes while barotropic instability is of minor importance. Average baroclinic instability energy transfer terms reach values of 2–3 μW m −3 in the pycnocline. Peak layer mean values are of the order 10 μW m −3 . It is shown that the spatial distribution of active transfer regions is closely related to the structure of the transient eddy field in the frontal zone and that strong instability processes are restricted to the pycnocline.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1989
    In:  Journal of Geophysical Research: Oceans Vol. 94, No. C4 ( 1989-04-15), p. 4757-4762
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 94, No. C4 ( 1989-04-15), p. 4757-4762
    Abstract: A 4‐year expendable bathythermograph data set (1984–1987) from the area between southern Brazil and the Antarctic Peninsula provides information on the interannual variability of front locations. Two boundaries of subtropical water at different depths are identified north and south of the Brazil Current‐Falkland (Malvinas) Current confluence zone. The northern Subtropical Front is displaced over a large part of the Argentine Basin from one observational period to the other. The shallow southern Subtropical Front appears fixed to the Falkland Escarpment. The Polar Front and Subantarctic Front locations do not vary much, except for one case where a cold core eddy in the Polar Frontal Zone causes a large northward displacement of the Subantarctic Front.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1989
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2006
    In:  Geophysical Research Letters Vol. 33, No. 24 ( 2006-12-21)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 33, No. 24 ( 2006-12-21)
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2006
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Geophysical Research Letters Vol. 27, No. 8 ( 2000-04-15), p. 1187-1190
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 27, No. 8 ( 2000-04-15), p. 1187-1190
    Abstract: Two zonal sections at 11°S in the South Atlantic, separated in time by 11 years, provide temperature differences in the deep ocean. The aim of this case study is to check whether intrinsic temperature changes are sufficiently large to identify long‐term water mass property variations which could be related to climate change. Potential temperature differences on isobaric surfaces in the deep ocean here reach several tenths of °C. They can be caused by vertical (cross‐isopycnal) or horizontal (isopycnal) advection and mixing, or by intrinsic water mass changes. The effect of vertical transport is removed by using neutral (density) surfaces. The effect of horizontal transport is determined by using a mixing parameterization for temperature and silica on neutral surfaces. The residual intrinsic temperature changes are, with a few local exceptions, within the range of the ±0.05°C uncertainty, and the temperature changes can thus be explained by advection and mixing alone.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1991
    In:  Journal of Geophysical Research: Oceans Vol. 96, No. C12 ( 1991-12-15), p. 22259-22271
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 96, No. C12 ( 1991-12-15), p. 22259-22271
    Abstract: Data from a large‐scale moored array in the Iberian and Canary basins are used to determine the energies of barotropic and baroclinic M 2 and S 2 tides. An analysis of time‐varying dynamical modes is performed. The results for barotropic modes confirm the global surface tide model results of Schwiderski (1980) for this region. The barotropic modes dominate in the deep basins, but increased baroclinic contributions are usually found over rough topography. At three locations near the continental slope in the southern Canary Basin the baroclinic modes dominate the barotropic mode. Results from an array of three moorings at the northern part of the Cape Verde Rise show an inverse behavior of barotropic and baroclinic energies, such that the baroclinic energy is steadily enhanced while the barotropic energy is reduced towards the continental margin. The increase in baroclinic energy is consistent with a generation of internal tides close to the shelf by surface tidal forcing over topography. Further evidence for this process is provided by the 2‐week periodicity of the first‐order baroclinic mode at the slope, corresponding to the spring‐neap cycle of the barotropic tide.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1991
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Oceans Vol. 103, No. C3 ( 1998-03-15), p. 5419-5428
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 103, No. C3 ( 1998-03-15), p. 5419-5428
    Abstract: Recent hydrographic sections and high‐quality historical data sets are used to determine geostrophic currents at subtropical latitudes in the western basin of the South Atlantic. Levels of no motion are determined from water mass information and a mass balance constraint to obtain the transport field of North Atlantic Deep Water (NADW) in this region. The incoming NADW transport of about 20 Sv from the north at 19°S appears to be balanced by only one third of this transport leaving in the south and two thirds leaving to the east or northeast at the Mid‐Atlantic Ridge. A simple model is proposed to determine the cause of the NADW branching. It is shown that potential vorticity preservation in the presence of topographic changes leads to a similar flow pattern as observed, with branching near the Vitória‐Trindade‐Ridge and also an eastward turning of the southward western boundary current at about 28°S, the latitude where a balance of planetary vorticity change and stretching can be expected.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1988
    In:  Journal of Geophysical Research: Oceans Vol. 93, No. C7 ( 1988-07-15), p. 8111-8118
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 93, No. C7 ( 1988-07-15), p. 8111-8118
    Abstract: The eastern part of the North Atlantic subtropical gyre is found in the region between the Azores and the Cape Verde Islands. A study of the gyre structure in the area east of 35°W between 8°N and 41°N is presented. The geostrophic flow field determined from historical temperature‐salinity data sets by objective analysis indicates seasonal variations in shape but no significant changes in the magnitude of volume transports. The eastern part of the gyre has a larger east‐west and smaller north‐south extension in summer compared with the winter season. The center shifts by about 2° latitude to the south from winter to summer. Long‐term temperature time series (6.5 years) from a mooring near the Azores are consistent with these results, showing always a consistent temperature increase at the beginning of the year which is apparently due to the displacement of the northeastern part of the gyre. A comparison between the mean flow fields and fields obtained from individual zonal sections indicates large deviations north and south of the gyre but small deviations within the gyre.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1988
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1992
    In:  Journal of Geophysical Research: Oceans Vol. 97, No. C1 ( 1992-01-15), p. 703-715
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 97, No. C1 ( 1992-01-15), p. 703-715
    Abstract: The Guinea Dome is a permanent, quasi‐stationary feature on the eastern side of the thermal ridge extending zonally across the tropical North Atlantic. The dome is a part of the large‐scale near‐surface flow fields associated with the North Equatorial Current, the North Equatorial Countercurrent and the North Equatorial Undercurrent. In the present study, historical and recently obtained hydrographic data are combined to investigate the thermohaline structure and geostrophic flow field in the vicinity of the dome. It is shown that the Guinea Dome exists throughout the year both in subthermocline and thermocline layers, that it has a corresponding cyclonic geostrophic flow, and that seasonal changes occur with respect to its vertical structure, horizontal extent, and position. The observational results are then compared with simulations from a general circulation model of the tropical Atlantic. A seven‐year simulation forced by observed monthly winds is run to compute a monthly climatology. The model adequately simulates the Guinea Dome with respect to its structure, flow field, and seasonal variability.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1992
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2009
    In:  Journal of Geophysical Research Vol. 114, No. C1 ( 2009-01-10)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 114, No. C1 ( 2009-01-10)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2009
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1989
    In:  Journal of Geophysical Research: Oceans Vol. 94, No. C5 ( 1989-05-15), p. 6159-6168
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 94, No. C5 ( 1989-05-15), p. 6159-6168
    Abstract: The Azores Current, south of the Azores Archipelago, is part of the subtropical North Atlantic gyre. Using an international hydrographic data set, we analyze mean and seasonal geostrophic transport fields in the upper 800 m of the ocean in order to determine the origin of the Azores Current in the western basin and seasonal changes in the related flow. Geostrophic currents are obtained by using the method applied by Stramma (1984) in the eastern basin. The Azores Current is found to originate in the area of the Southwest Newfoundland Rise (Figure 10). In winter an almost uniform current connects this region of origin with the Azores Current, while a branching into two current bands is observed in summer, with the southern band forming a marked cyclonic loop. Within the upper 800 m, all of the transport in the northern band and about 70% of the transport in the southern band recirculates in the eastern basin. Additionally, expendable bathythermograph data from the Azores Current region indicate an increase of eddy potential energy from winter to summer.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1989
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...