GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1109, doi:10.1029/2003GC000590.
    Description: Late Quaternary sections (1.2 Ma) of ODP-Site 1075 from the Congo deep-sea fan are investigated to reconstruct variations of terrigenous organic matter supply to the eastern equatorial Atlantic. To characterize the organic matter (OM) with regard to marine and terrigenous amounts we used elemental analysis (C, N, S), stable carbon isotopes (bulk δ13Corg), Rock-Eval pyrolysis, and terrigenous biomarkers (lignin phenols from CuO oxidation). The records of total organic carbon (TOC) contents, Corg/Ntot ratios, bulk OM degradation rates (Corg/Corg*), and the ratios of hydrocarbons (HC) from low-mature versus HC from high-mature OM (lm/hm) reveal pronounced cyclic changes in OM abundance, preservation, and reactivity that are closely related to the precessional controlled record of insolation, and thus, to variations in upwelling intensity and fluvial run-off. Primary productivity off the Congo is stimulated by both, enhanced nutrient supply in response to trade-induced upwelling during arid African climates (insolation minima) and fluvial nutrient delivery during humid stages (following insolation maxima), especially due to the contribution of dissolved silica that is taken up preferably by diatoms. However, results stemming from a multiparameter approach reveal that the fluvial supply of degraded OM and black carbon (BC) associated with fine-grained sediments from soil erosion is a decisive factor for the preservation of marine OM and, in addition, significantly influences the geochemical signature of bulk and terrigenous OM. Riverine and eolian supply of C4 plant matter, as well as enhanced concentrations of BC, during arid and arid-to-humid transitional climate stages, may lead to a severe underestimation of terrigenous organic carbon, if its amount is calculated from bulk isotopic ratios using binary end-member models. During the humid stages, it is the massive supply of 13C-enriched soil OM with low Corg/Ntot ratios that may suggest a mainly marine composition of bulk OM. In fact, terrigenous OM governs bulk OM geochemical signatures in the sediments of the Congo deep-sea fan, a result that is contradictory to earlier studies, especially to the conventional interpretation of the bulk δ13Corg signal.
    Description: This research was funded by the Deutsche Forschungsgemeinschaft, grant Wa 1036/5, and kindly supported by the Max-Planck Society.
    Keywords: Congo deep-sea fan ; Terrestrial organic matter ; Lignin ; Organic matter reactivity ; Insolation forcing ; Quaternary tropical Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q10004, doi:10.1029/2004GC000772.
    Description: Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (〈C25) are removed by evaporation on the moving wire. Test samples processed using this procedure yielded n-alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N–28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.
    Description: We thank the WHOI Summer Student Fellow program and NSF (BCS-0218511) for funding.
    Keywords: Moving wire ; Plant-wax n-alkanes ; Stable carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 722636 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...