GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C02008, doi:10.1029/2011JC007589.
    Description: Upper ocean thermohaline structure in the California Current System is investigated using sustained observations from autonomous underwater gliders and a numerical state estimate. Both observations and the state estimate show layers distinguished by the temperature and salinity variability along isopycnals (i.e., spice variance). Mesoscale and submesoscale spice variance is largest in the remnant mixed layer, decreases to a minimum below the pycnocline near 26.3 kg m−3, and then increases again near 26.6 kg m−3. Layers of high (low) meso- and submesoscale spice variance are found on isopycnals where large-scale spice gradients are large (small), consistent with stirring of large-scale gradients to produce smaller scale thermohaline structure. Passive tracer adjoint calculations in the state estimate are used to investigate possible mechanisms for the formation of the layers of spice variance. Layers of high spice variance are found to have distinct origins and to be associated with named water masses; high spice variance water in the remnant mixed layer has northerly origin and is identified as Pacific Subarctic water, while the water in the deeper high spice variance layer has southerly origin and is identified as Equatorial Pacific water. The layer of low spice variance near 26.3 kg m−3 lies between the named water masses and does not have a clear origin. Both effective horizontal diffusivity, κh, and effective diapycnal diffusivity, κv, are elevated relative to the diffusion coefficients set in the numerical simulation, but changes in κh and κv with depth are not sufficient to explain the observed layering of thermohaline structure.
    Description: We gratefully acknowledge funding from the Gordon and Betty Moore Foundation, the Coastal Ocean Currents Monitoring Project (COCMP), and NOAA. R. E. Todd was partially supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Cooperative Institute for the North Atlantic Region.
    Description: 2012-08-03
    Keywords: California Current System ; Adjoint model ; Glider ; Passive tracer ; Spice ; Thermohaline structure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sun, R., Subramanian, A. C., Cornuelle, B. D., Mazloff, M. R., Miller, A. J., Ralph, F. M., Seo, H., & Hoteit, I. The role of air-sea interactions in atmospheric rivers: Case studies using the SKRIPS regional coupled model. Journal of Geophysical Research: Atmospheres, 126(6), (2021): e2020JD032885, https://doi.org/10.1029/2020JD032885.
    Description: Atmospheric rivers (ARs) play a key role in California's water supply and are responsible for most of the extreme precipitation and major flooding along the west coast of North America. Given the high societal impact, it is critical to improve our understanding and prediction of ARs. This study uses a regional coupled ocean–atmosphere modeling system to make hindcasts of ARs up to 14 days. Two groups of coupled runs are highlighted in the comparison: (1) ARs occurring during times with strong sea surface temperature (SST) cooling and (2) ARs occurring during times with weak SST cooling. During the events with strong SST cooling, the coupled model simulates strong upward air–sea heat fluxes associated with ARs; on the other hand, when the SST cooling is weak, the coupled model simulates downward air–sea heat fluxes in the AR region. Validation data shows that the coupled model skillfully reproduces the evolving SST, as well as the surface turbulent heat transfers between the ocean and atmosphere. The roles of air–sea interactions in AR events are investigated by comparing coupled model hindcasts to hindcasts made using persistent SST. To evaluate the influence of the ocean on ARs we analyze two representative variables of AR intensity, the vertically integrated water vapor (IWV) and integrated vapor transport (IVT). During strong SST cooling AR events the simulated IWV is improved by about 12% in the coupled run at lead times greater than one week. For IVT, which is about twice more variable, the improvement in the coupled run is about 5%.
    Description: The authors gratefully acknowledge the research funding (grant number: OSR-2-16-RPP-3268.02) from KAUST (King Abdullah University of Science and Technology). The authors also appreciate the computational resources on supercomputer Shaheen II and the assistance provided by KAUST Supercomputer Laboratory. Additional funding from the NSF (OCE2022846, and OCE2022868) and the National Oceanic and Atmospheric Administration (MAPP NA17OAR4310106 and NA17OAR4310255) is also greatly appreciated. This study is also supported by the U.S. Army Corps of Engineers (USACE)-Cooperative Ecosystem Studies Unit (CESU) as part of Forecast Informed Reservoir Operations (FIRO) under grant W912HZ-15-2-0019. The authors thank Caroline Papadopoulos for important technical support when installing software and using the Shaheen II cluster.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...