GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sears Foundation of Marine Research  (3)
  • American Geophysical Union  (1)
  • Instytut Oceanologii Polska Akademia Nauk, Sopot  (1)
  • 1
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 61 (6). pp. 765-793.
    Publication Date: 2017-11-28
    Description: An optimization experiment is performed with a vertically resolved, nitrogen-based ecosystem model, composed of four state variables (NPZD-model): dissolved inorganic nitrogen (N), phytoplankton (P), herbivorous zooplankton (Z) and detritus (D). Parameter values of the NPZD-model are optimized while assimilating observations at three locations in the North Atlantic simultaneously, namely at the sites of the Bermuda Atlantic Time-Series Study (BATS; 31N 64W), of the North Atlantic Bloom Experiment (NABE; 47N 20W), and of Ocean Weather Ship-India (OWS-INDIA; 59N 19W). A method is described for a simultaneous optimization which effectively merges different types of observational data at distinct sites in the ocean. A micro-genetic algorithm is applied for the minimization of a weighted least square misfit function. The optimal parameter estimates are shown to represent a compromise among local parameter estimates that would be obtained from single-site optimizations at the individual locations. The optimization yields a high estimate of the initial slope parameter of photosynthesis (alpha), which is shown to be necessary to match the initial phases of phytoplankton growth. The estimate of alpha is well constrained by chlorophyll observations at the BATS and OWS-INDIA sites and likely compensates for a deficiency in the parameterization of light-limited growth. The optimization also points toward an enhanced recycling of organic nitrogen which is perceived from a high estimate for the phytoplankton mortality/excretion rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 63 (2). pp. 335-358.
    Publication Date: 2018-03-21
    Description: A marine ecosystem model, that had previously been calibrated in a one-dimensional (1D) mode against observations at three time-series and process-study sites simultaneously, is coupled to a three-dimensional (3D) circulation model of the North and Equatorial Atlantic. Compared to an experiment with a previously employed subjectively tuned ecosystem model, the new 3D-model does not only reduce the model-data misfit at those locations at which observations entered the 1D optimization procedure, but also at an oligotrophic site in the subtropics that had not been considered in the 1D calibration. Basin-scale gridded climatological data sets of nitrate, surface chlorophyll, and satellite-derived primary production also reveal a generally lower model-data misfit for the optimized model. The most significant improvement is found in terms of simulated primary production: on average, primary production is about 2.5 times higher in the optimized model which primarily results from the inclusion of a phytoplankton recycling pathway back to dissolved inorganic nitrogen. This recycling pathway also allows for a successful reproduction of nonvanishing surface nitrate concentrations over large parts of the subpolar North Atlantic. Apart from primary production, the parameter optimization reduces root-mean-square misfits by merely 10–25% and remaining misfits are still much larger than observational error estimates. These residual misfits can be attributed both to errors in the physical model component and to errors in the structure of the ecosystem model, which an objective estimation of ecosystem model parameters by data assimilation alone cannot resolve.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-26
    Description: Chlorophyll (chl a) concentration in coastal seas exhibits variability on various spatial and temporal scales. Resuspension of particulate matter can somewhat limit algal growth, but can also enhance productivity because of the intrusion of nutrient-rich pore water from sediments or bottom water layers into the whole water column. This study investigates whether characteristic changes in net phytoplankton growth can be directly linked to resuspension events within the German Bight. Satellite-derived chl a were used to derive spatial patterns of net rates of chl a increase/decrease (NR) in 2003 and 2004. Spatial correlations between NR and mean water column irradiance were analysed. High correlations in space and time were found in most areas of the German Bight (R2 〉 0.4), suggesting a tight coupling between light availability and algal growth during spring. These correlations were reduced within a distinct zone in the transition between shallow coastal areas and deeper offshore waters. In summer and autumn, a mismatch was found between phytoplankton blooms (chl a 〉 6 mg m−3) and spring-tidal induced resuspension events as indicated by bottom velocity, suggesting that there is no phytoplankton resuspension during spring tides. It is instead proposed here that frequent and recurrent spring-tidal resuspension events enhance algal growth by supplying remineralized nutrients. This hypothesis is corroborated by a lag correlation analysis between resuspension events and in-situ measured nutrient concentrations. This study outlines seasonally different patterns in phytoplankton productivity in response to variations in resuspension, which can serve as a reference for modelling coastal ecosystem dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-28
    Description: This study relates the performance of an optimized one-dimensional ecosystem model to observations at three sites in the North Atlantic Ocean: the Bermuda Atlantic Time Series Study (BATS, 31N 64W), the location of the North Atlantic Bloom Experiment (NABE, 47N 20W), and Ocean Weather Ship INDIA (OWS-INDIA, 59N 19W). The ecosystem model is based on nitrogen and resolves dissolved inorganic nitrogen (N), phytoplankton (P), zooplankton (Z) and detritus (D), therefore called the NPZD-model. Physical forcing, such as temperature and eddy diffusivities are taken from an eddy-permitting general circulation model of the North Atlantic Ocean, covering a period from 1989 through 1993. When an optimized parameter set is applied, the recycling of organic nitrogen becomes significantly enhanced, compared to previously published results of the NPZD model. The optimized model yields improved estimates of the annual ratio of regenerated to total primary production (f-ratio). The annual f-ratios are 0.09, 0.31, and 0.42 for the locations of BATS, NABE, and OWS-INDIA, respectively. Nevertheless, three major model deficiencies are identified. Most conspicuous are systematic discrepancies between measured 14C-fixation rates and modeled primary production under nutrient depleted conditions. This error is primarily attributed to the assumption of a constant carbon-to-nitrogen ratio for nutrient acquisition. Secondly, the initial period of the modeled phytoplankton blooms is hardly tracked by the model. That particular model deficiency becomes most apparent at the OWS-INDIA site. The interplay between algal growth and short-term alterations in stratification and mixing is believed to be insufficiently resolved by the physical model. Eventually, the model's representation of the vertical nitrogen export appears to be too simple in order to match, at the same time, remineralization within the upper 300 meters and the biomass export to greater depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C08001, doi:10.1029/2006JC003852.
    Description: Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
    Description: This research was supported by the U.S. National Science Foundation through the JGOFS Synthesis and Modeling Project (OCE-0097285) and the National Aeronautics and Space Agency (NAG5-11259 and NNG05GO04G), as well as numerous other grants to the various investigators who participated.
    Keywords: Ecosystem model comparison ; Biogeochemical data assimilation ; Phytoplankton functional groups
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...