GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Dissolved organic matter (DOM) represents a major reservoir of carbon in the oceans. Environmental stressors such as ocean acidification (OA) potentially affect DOM production and degradation processes, e.g., phytoplankton exudation or microbial uptake and biotransformation of molecules. Resulting changes in carbon storage capacity of the ocean, thus, may cause feedbacks on the global carbon cycle. Previous experiments studying OA effects on the DOM pool under natural conditions, however, were mostly conducted in temperate and coastal eutrophic areas. Here, we report on OA effects on the existing and newly produced DOM pool during an experiment in the subtropical North Atlantic Ocean at the Canary Islands during an (1) oligotrophic phase and (2) after simulated deep water upwelling. The last is a frequently occurring event in this region controlling nutrient and phytoplankton dynamics. We manipulated nine large-scale mesocosms with a gradient of pCO2 ranging from ~350 up to ~1,030 μatm and monitored the DOM molecular composition using ultrahigh-resolution mass spectrometry via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). An increase of 37 μmol L−1 DOC was observed in all mesocosms during a phytoplankton bloom induced by simulated upwelling. Indications for enhanced DOC accumulation under elevated CO2 became apparent during a phase of nutrient recycling toward the end of the experiment. The production of DOM was reflected in changes of the molecular DOM composition. Out of the 7,212 molecular formulae, which were detected throughout the experiment, ~50% correlated significantly in mass spectrometric signal intensity with cumulative bacterial protein production (BPP) and are likely a product of microbial transformation. However, no differences in the produced compounds were found with respect to CO2 levels. Comparing the results of this experiment with a comparable OA experiment in the Swedish Gullmar Fjord, reveals similar succession patterns for individual compound pools during a phytoplankton bloom and subsequent accumulation of these compounds were observed. The similar behavior of DOM production and biotransformation during and following a phytoplankton bloom irrespective of plankton community composition and CO2 treatment provides novel insights into general dynamics of the marine DOM pool.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-14
    Description: Subterranean estuaries are connective zones between inland aquifers and the open sea where terrestrial freshwater and circulating seawater mix and undergo major biogeochemical changes. They are biogeochemical reactors that modify groundwater chemistry prior to discharge into the sea. We propose that subterranean estuaries of high-energy beaches are particularly dynamic environments, where the effect of the dynamic boundary conditions propagates tens of meters into the subsurface, leading to strong spatio-temporal variability of geochemical conditions. We hypothesize that they form a unique habitat with an adapted microbial community unlike other typically more stable subsurface environments. So far, however, studies concerning subterranean estuaries of high-energy beaches have been rare and therefore their functioning, and their importance for coastal ecosystems, as well as for carbon, nutrient and trace element cycling, is little understood. We are addressing this knowledge gap within the interdisciplinary research project DynaDeep by studying the combined effect of surface (hydro- and morphodynamics) on subsurface processes (groundwater flow and transport, biogeochemical reactions, microbiology). A unique subterranean estuary observatory was established on the northern beach of the island of Spiekeroog facing the North Sea, serving as an exemplary high-energy research site and model system. It consists of fixed and permanent infrastructure such as a pole with measuring devices, multi-level groundwater wells and an electrode chain. This forms the base for autonomous measurements, regular repeated sampling, interdisciplinary field campaigns and experimental work, all of which are integrated via mathematical modelling to understand and quantify the functioning of the biogeochemical reactor. First results show that the DynaDeep observatory is collecting the intended spatially and temporally resolved morphological, sedimentological and biogeochemical data. Samples and data are further processed ex-situ and combined with experiments and modelling. Ultimately, DynaDeep aims at elucidating the global relevance of these common but overlooked environments.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-07
    Description: Deep-sea dissolved organic matter (DOM) constitutes a huge carbon reservoir in the worlds' oceans that – despite its abundance – is virtually unused as a substrate by marine heterotrophs. Heating within hydrothermal systems induces major molecular modifications of deep-sea DOM. Here, we tested the hypothesis that hydrothermal heating of deep-sea DOM enhances bioavailability. Aliquots of DOM extracted from the deep North Pacific (North Equatorial Pacific Intermediate Water; NEqPIW) were re-dissolved in artificial seawater and subjected to temperatures of 100 and 200 °C (40 MPa) using Dickson-type reactors. In agreement with earlier findings we observed a temperature-related drop in dissolved organic carbon (DOC) concentration (−6.1% at 100 °C, −21.0% at 200 °C) that predominantly affected the solid-phase extractable (SPE-DOC) fraction (−18.2% at 100 °C, −51.4% at 200 °C). Fourier-transform ion cyclotron resonance mass spectrometric (FT-ICR-MS) analysis confirmed a temperature-related reduction of average molecular mass, O/C ratios, double bond equivalents (DBE) and a relative increase in aromaticity (AImod). This thermally altered DOM was added (25 μmol L−1 DOC) to deep-water samples from the South West Pacific (Kermadec Arc, RV Sonne / SO253, 32° 37.706′ S | 179° 38.728′ W) and incubated with the prevailing natural microbial community. After 16 days at 4 °C in the dark, prokaryotic cell counts in incubations containing the full spectrum of thermally-degraded DOM (extractable and non-extractable compounds) had increased considerably (on average 21× for DOM100°C and 27× for DOM200°C). In contrast, prokaryotic growth in incubations to which only solid-phase extractable thermally-altered DOM was added was not enhanced compared to control incubations. The experiments demonstrate that temperature-driven degradation of deep-sea recalcitrant DOM within hydrothermal systems turns fractions of it accessible to microbes. The thermally-produced DOM compounds that stimulate microbial growth are not retained on reversed-phase resins (SPE-DOM) and are likely low-molecular mass organic acids. Despite the comprehensive compositional modifications of the solid-phase extractable (SPE-DOM) fraction through heating, it remains inaccessible to microbes at the investigated concentration levels. The microbial incubation resulted in only minor and mostly insignificant overall changes in SPE-DOM molecular composition and concentration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science and Technology, American Chemical Society (ACS), ISSN: 0013-936X
    Publication Date: 2024-04-08
    Description: Marine permeable sediments are important sites for organic matter turnover in the coastal ocean. However, little is known about their role in trapping dissolved organic matter (DOM). Here, we examined DOM abundance and molecular compositions (9804 formulas identified) in subtidal permeable sediments along a near- to offshore gradient in the German North Sea. With the salinity increasing from 30.1 to 34.6 PSU, the DOM composition in bottom water shifts from relatively higher abundances of aromatic compounds to more highly unsaturated compounds. In the bulk sediment, DOM leached by ultrapure water (UPW) from the solid phase is 54 ± 20 times more abundant than DOM in porewater, with higher H/C ratios and a more terrigenous signature. With 0.5 M HCl, the amount of leached DOM (enriched in aromatic and oxygen-rich compounds) is doubled compared to UPW, mainly due to the dissolution of poorly crystalline Fe phases (e.g., ferrihydrite and Fe monosulfides). This suggests that poorly crystalline Fe phases promote DOM retention in permeable sediments, preferentially terrigenous, and aromatic fractions. Given the intense filtration of seawater through the permeable sediments, we posit that Fe can serve as an important intermediate storage for terrigenous organic matter and potentially accelerate organic matter burial in the coastal ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...