GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (8)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2000
    In:  Science Vol. 288, No. 5467 ( 2000-05-05), p. 852-854
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 288, No. 5467 ( 2000-05-05), p. 852-854
    Abstract: In a California riparian system, the most diverse natural assemblages are the most invaded by exotic plants. A direct in situ manipulation of local diversity and a seed addition experiment showed that these patterns emerge despite the intrinsic negative effects of diversity on invasions. The results suggest that species loss at small scales may reduce invasion resistance. At community-wide scales, the overwhelming effects of ecological factors spatially covarying with diversity, such as propagule supply, make the most diverse communities most likely to be invaded.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2000
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2016
    In:  Science Vol. 353, No. 6298 ( 2016-07-29), p. 482-485
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 353, No. 6298 ( 2016-07-29), p. 482-485
    Abstract: Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species’ spread velocity, but how landscape patchiness—an important control over traits under selection—influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 364, No. 6442 ( 2019-05-24)
    Abstract: Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother–offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 381, No. 6658 ( 2023-08-11)
    Abstract: Comparative epigenomics is an emerging field that combines epigenetic signatures with phylogenetic relationships to elucidate species characteristics such as maximum life span. For this study, we generated cytosine DNA methylation (DNAm) profiles ( n = 15,456) from 348 mammalian species using a methylation array platform that targets highly conserved cytosines. RATIONALE Nature has evolved mammalian species of greatly differing life spans. To resolve the relationship of DNAm with maximum life span and phylogeny, we performed a large-scale cross-species unsupervised analysis. Comparative studies in many species enables the identification of epigenetic correlates of maximum life span and other traits. RESULTS We first tested whether DNAm levels in highly conserved cytosines captured phylogenetic relationships among species. We constructed phyloepigenetic trees that paralleled the traditional phylogeny. To avoid potential confounding by different tissue types, we generated tissue-specific phyloepigenetic trees. The high phyloepigenetic-phylogenetic congruence is due to differences in methylation levels and is not confounded by sequence conservation. We then interrogated the extent to which DNA methylation associates with specific biological traits. We used an unsupervised weighted correlation network analysis (WGCNA) to identify clusters of highly correlated CpGs (comethylation modules). WGCNA identified 55 distinct comethylation modules, of which 30 were significantly associated with traits including maximum life span, adult weight, age, sex, human mortality risk, or perturbations that modulate murine life span. Both the epigenome-wide association analysis (EWAS) and eigengene-based analysis identified methylation signatures of maximum life span, and most of these were independent of aging, presumably set at birth, and could be stable predictors of life span at any point in life. Several CpGs that are more highly methylated in long-lived species are located near HOXL subclass homeoboxes and other genes that play a role in morphogenesis and development. Some of these life span–related CpGs are located next to genes that are also implicated in our analysis of upstream regulators (e.g., ASCL1 and SMAD6 ). CpGs with methylation levels that are inversely related to life span are enriched in transcriptional start site (TSS1) and promoter flanking (PromF4, PromF5) associated chromatin states. Genes located in chromatin state TSS1 are constitutively active and enriched for nucleic acid metabolic processes. This suggests that long-living species evolved mechanisms that maintain low methylation levels in these chromatin states that would favor higher expression levels of genes essential for an organism’s survival. The upstream regulator analysis of the EWAS of life span identified the pluripotency transcription factors OCT4 , SOX2 , and NANOG. Other factors, such as POLII , CTCF , RAD21 , YY1 , and TAF1 , showed the strongest enrichment for negatively life span–related CpGs. CONCLUSION The phyloepigenetic trees indicate that divergence of DNA methylation profiles closely parallels that of genetics through evolution. Our results demonstrate that DNA methylation is subjected to evolutionary pressures and selection. The publicly available data from our Mammalian Methylation Consortium are a rich source of information for different fields such as evolutionary biology, developmental biology, and aging. DNAm network relates to mammalian phylogeny and traits. ( A ) Phyloepigenetic tree from the DNAm data generated from blood samples. ( B ) Unsupervised WGCNA networks identified 55 comethylation modules. ( C ) EWAS of log-transformed maximum life span. Each dot corresponds to the methylation levels of a highly conserved CpG. Shown is the log (base 10)–transformed P value ( y axis) versus the human genome coordinate Hg19 ( x axis). ( D ) Comethylation module correlated with maximum life span of mammals. Eigengene (first principal component of scaled CpGs in the midnightblue module) versus log (base e) transformed maximum life span. Each dot corresponds to a different species.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 6 ( 2021-02-05)
    Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has emerged as the cause of a global pandemic. We used RNA sequencing to analyze 286 nasopharyngeal (NP) swab and 53 whole-blood (WB) samples from 333 patients with COVID-19 and controls. Overall, a muted immune response was observed in COVID-19 relative to other infections (influenza, other seasonal coronaviruses, and bacterial sepsis), with paradoxical down-regulation of several key differentially expressed genes. Hospitalized patients and outpatients exhibited up-regulation of interferon-associated pathways, although heightened and more robust inflammatory responses were observed in hospitalized patients with more clinically severe illness. Two-layer machine learning–based host classifiers consisting of complete ( 〉 1000 genes), medium ( 〈 100), and small ( 〈 20) gene biomarker panels identified COVID-19 disease with 85.1–86.5% accuracy when benchmarked using an independent test set. SARS-CoV-2 infection has a distinct biosignature that differs between NP swabs and WB and can be leveraged for COVID-19 diagnosis.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 356, No. 6341 ( 2017-06-02), p. 912-913
    Abstract: Seafood is the world's most internationally traded food commodity. Approximately three out of every seven people globally rely on seafood as a primary source of animal protein ( 1 ). Revelations about slavery and labor rights abuses in fisheries have sparked outrage and shifted the conversation ( 2 , 3 ), placing social issues at the forefront of a sector that has spent decades working to improve environmental sustainability. In response, businesses are seeking to reduce unethical practices and reputational risks in their supply chains. Governments are formulating policy responses, and nonprofit and philanthropic organizations are deploying resources and expertise to address critical social issues. Yet the scientific community has not kept pace with concerns for social issues in the sector. As the United Nations Ocean Conference convenes in New York (5 to 9 June), we propose a framework for social responsibility and identify key steps the scientific community must take to inform policy and practice for this global challenge.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 3, No. 83 ( 2011-05-18)
    Abstract: Graft-versus-host disease (GVHD) is a frequent and severe complication after hematopoietic cell transplantation. Natural CD4 + CD25 + regulatory T cells (nT regs ) have proven highly effective in preventing GVHD and autoimmunity in murine models. Yet, clinical application of nT regs has been severely hampered by their low frequency and unfavorable ex vivo expansion properties. Previously, we demonstrated that umbilical cord blood (UCB) nT regs could be purified and expanded in vitro using good manufacturing practice (GMP) reagents; however, the initial number of nT regs in UCB units is limited, and average yield after expansion was only 1 × 10 9 nT regs . Therefore, we asked whether yield could be increased by using peripheral blood (PB), which contains far larger quantities of nT regs . PB nT regs were purified under GMP conditions and expanded 80-fold to yield 19 × 10 9 cells using anti-CD3 antibody–loaded, cell-based artificial antigen-presenting cells (aAPCs) that expressed the high-affinity Fc receptor and CD86. A single restimulation increased expansion to ~3000-fold and yield to 〉 600 × 10 9 cells while maintaining Foxp3 expression and suppressor function. nT reg expansion was ~50 million–fold when flow sort–purified nT regs were restimulated four times with aAPCs. Indeed, cryopreserved donor nT regs restimulated four times significantly reduced GVHD lethality induced by the infusion of human T cells into immune-deficient mice. The capability to efficiently produce donor cell banks of functional nT regs could transform the treatment of GVHD and autoimmunity by providing an off-the-shelf, cost-effective, and proven cellular therapy.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2011
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 301, No. 5631 ( 2003-07-18), p. 355-357
    Abstract: The cascade from tides to turbulence has been hypothesized to serve as a major energy pathway for ocean mixing. We investigated this cascade along the Hawaiian Ridge using observations and numerical models. A divergence of internal tidal energy flux observed at the ridge agrees with the predictions of internal tide models. Large internal tidal waves with peak-to-peak amplitudes of up to 300 meters occur on the ridge. Internal-wave energy is enhanced, and turbulent dissipation in the region near the ridge is 10 times larger than open-ocean values. Given these major elements in the tides-to-turbulence cascade, an energy budget approaches closure.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2003
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...