GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (2)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 2 . pp. 189-204.
    Publication Date: 2019-01-21
    Description: Sinking particles, once caught in sediment trap jars, release dissolved elements into the surrounding medium through leaching from their pore fluids, chemical dissolution and the activity of free exoenzymes. This results in an increase in dissolved elements in the trap jar supernatant. Elemental fluxes as traditionally measured by sediment traps underestimate total export when this particle-associated dissolved flux is not considered. The errors introduced are variable and alter both the absolute levels of flux as well as the stoichiometry of export. These errors have been quantified and corrections applied for samples from sediment traps in the North Atlantic based on measurements of excess dissolved carbon, nitrogen, phosphorus, silica and calcium in the supernatant of the collection cups. At the base of the winter mixed layer, on average 90±6% of phosphorus fluxes are found as excess phosphate whereas for carbon and nitrogen dissolved concentrations account for 30 (±8)% and 47(±11)% of total fluxes respectively. Excess dissolved silica is on average 61 (±17)% of total biogenic silica flux. Little (〈10%) of calcium is solubilized. The proportion of dissolved to total flux decreases with trap deployment depth. Calculations of the C:N:P ratios for particles only are well above the Redfield ratios of 106:16:1 (Redfield et al., 1963), although the mid-water dissolved N:P and N:Si values as well as the C:N:P ratios of remineralisation along isopycnals conform to the Redfield ratios at this site. Accounting for dissolved fluxes of all these elements brings the stoichiometry of export in agreement with the Redfield Ratio and with other geochemical estimates of winter mixed layer export. A factor of 3 to 4 higher ratios of organic: inorganic carbon export also implies that the net atmospheric CO2 sequestration by the biological pump is about 50% higher at this site when the dissolved elemental fluxes are considered. Solubilization is thus a process that should be accounted for in protocols used to measure vertical fluxes with sediment traps.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-06
    Description: Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3–9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a), showed the highest instantaneous grow rates (k=0.37–0.99 d−1) and increased from ca. 2–3 to 6–12 μg l−1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l−1 (corresponding to 1.9 and 10.8 μmol C l−1), peaking on day 13–15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12–43% of the standing stock d−1) only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20–65% of the standing stock per day.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 53 (2). pp. 506-512.
    Publication Date: 2017-05-02
    Description: Calcification of the cosmopolitan coccolithophore species Emiliania huxleyi was investigated in relation to the cell division cycle with the use of batch cultures. With a 12 : 12 h light : dark cycle, the population was synchronised to undergo division as a cohort, simultaneously passing through the G1 (assimilation), S (DNA replication), and G2+M (cell division and mitosis) phases. Cell division was followed with the use of quantitative DNA staining and flow cytometry. Simultaneously, carbon-14 (14C) assimilation in organic and inorganic carbon as well as cell abundance, size, and organic nitrogen content were measured at 2-h intervals. In additional experiments, changes in calcification and cell cycle stages were investigated in nitrogen-, phosphorus-, and light-limited cultures. Calcification occurred only during the G1 cell cycle phase, as seen by the very tight correlation between the percentage of cells in G1 and calcification during the dark period. When growth was limited by nitrogen, cells decreased in size, remained in the G1 phase, and showed a moderate increase in the cell-specific calcite content. Limitation of growth by phosphorus, however, caused a significant increase in cell size and a dramatic increase in cellular calcite. Light limitation, by slowing the growth rate, prolonged the time cells spent in the G1 phase with a corresponding increase in the cellular calcite content. These results help explain the differing responses of coccolithophorid growth to nitrogen, phosphorus, and light limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...