GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (3)
  • Kiel : Inst. für Meereskunde, Abt. Theoretische Ozeanographie  (1)
  • 1
    Book
    Book
    Kiel : Inst. für Meereskunde, Abt. Theoretische Ozeanographie
    Keywords: Hochschulschrift
    Type of Medium: Book
    Pages: 129 S. , Zahlr. graph. Darst. , 30 cm
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 241
    Language: German
    Note: Literaturverz. S. 123 - 129 , Zugl.: Kiel, Univ., Diss. : 1993
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-04
    Description: Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 . pp. 2182-2200.
    Publication Date: 2020-08-04
    Description: Inertial separation of a western boundary current from an idealized continent is studied in a homogeneous ocean circulation model. A number of processes are identified that either encourage or prevent separation at a coastal promontory in this model. For a single-gyre wind forcing a free-slip boundary condition forces the stream to follow the coastline, whereas the no-slip condition allows separation at a sharp corner. A prescribed countergyre to the north of the stream is not necessary to achieve separation if the no-slip condition is used. "Premature" separation occurs for wind fields that do not extend beyond the latitude of the cape. For a more realistic wind field and coastline two distinct states of the stream are found. At small Reynolds numbers the current fails to separate and develops a stationary anticyclonic meander north of the cape. Stronger currents separate and drive a recirculation in the lee of the continent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 (18). pp. 4631-4637.
    Publication Date: 2020-08-04
    Description: Analyses of ocean observations and model simulations suggest that there have been considerable changes in the thermohaline circulation (THC) during the last century. These changes are likely to be the result of natural multidecadal climate variability and are driven by low-frequency variations of the North Atlantic Oscillation (NAO) through changes in Labrador Sea convection. Indications of a sustained THC weakening are not seen during the last few decades. Instead, a strengthening since the 1980s is observed. The combined assessment of ocean hydrography data and model results indicates that the expected anthropogenic weakening of the THC will remain within the range of natural variability during the next several decades
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...