GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (1)
  • Elsevier  (1)
  • 1
    Publication Date: 2015-03-12
    Description: The Fram Strait is the main gateway for water, heat and sea-ice exchanges between the Arctic Ocean and the North Atlantic. The complex physical environment results in a highly variable primary production in space and time. Previous regional studies have defined key bottom-up (ice cover and stratification from melt water controlling the light availability, and wind mixing and water transport affecting the supply of nutrients) and top-down processes (heterotrophic grazing). In this study, in situ field data, remote sensing and modeling techniques were combined to investigate in detail the influence of melting sea-ice and ocean properties on the development of phytoplankton blooms in the Fram Strait region for the years 1998–2009. Satellite-retrieved chlorophyll-a concentrations from temporarily ice-free zones were validated with contextual field data. These were then integrated per month on a grid size of 20 × 20 km, resulting in 10 grids/fields. Factors tested for their influence on spatial and temporal variation of chlorophyll-a were: sea-ice concentration from satellite and sea-ice thickness, ocean stratification, water temperature and salinity time-series simulated by the ice-ocean model NAOSIM. The time series analysis for those ten ice-free fields showed a regional separation according to different physical processes affecting phytoplankton distribution. At the marginal ice zone the melting sea-ice was promoting phytoplankton growth by stratifying the water column and potentially seeding phytoplankton communities. In this zone, the highest mean chlorophyll concentration averaged for the productive season (April–August) of 0.8 mgC/m3 was observed. In the open ocean the phytoplankton variability was correlated highest to stratification formed by solar heating of the upper ocean layers. Coastal zone around Svalbard showed processes associated with the presence of coastal ice were rather suppressing than promoting the phytoplankton growth. During the twelve years of observations, chlorophyll concentrations significantly increased in the southern part of the Fram Strait, associated with an increase in sea surface temperature and a decrease in Svalbard coastal ice. Highlights • We used combination of satellite, simulated and in situ data for 1998–2009. • Stratification from sea-ice melt resulted in largest CHL at the marginal ice zone. • Stratification caused by solar warming promoted open ocean blooms. • Late retreat of Svalbard shelf ice delayed coastal blooms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 326-344.
    Publication Date: 2018-04-05
    Description: Global mean and eddy fields from a four-year experiment with a 1/6° × 1/5° horizontal resolution implementation of the CME North Atlantic model are presented. The time-averaged wind-driven and thermohaline circulation in the model is compared to the results of a 1/3° × 2/5° model run in very similar configuration. In general, the higher resolution results are found to confirm that the resolution of previous CME experiments is sufficient to describe many features of the large-scale circulation and water mass distribution quite well. While the increased resolution does not lead to large changes in the mean flow patterns, the variability in the model is enhanced significantly. On the other hand, however, not all aspects of the circulation have improved with resolution. The Azores Current Frontal Zone with its variability in the eastern basin is still represented very poorly. Particular attention is also directed toward the unrealistic stationary anticyclones north of Cape Hatteras and in the Gulf of Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...