GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
Material
Publisher
  • AIP Publishing  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 1999
    In:  Physics of Fluids Vol. 11, No. 2 ( 1999-02-01), p. 403-416
    In: Physics of Fluids, AIP Publishing, Vol. 11, No. 2 ( 1999-02-01), p. 403-416
    Abstract: Results from a dual-tracer planar laser-induced fluorescence (PLIF) technique for making instantaneous, quantitative measurements of molecularly mixed fluid fraction are presented for an axisymmetric jet in a slow co-flow. The two-camera, two-laser technique uses PLIF of nitric oxide seeded in a nitrogen jet to mark the unmixed jet fluid fraction, while PLIF of acetone seeded into the low velocity air co-flow marks the total co-flow fluid fraction. By combining data from these two simultaneous images, quantitative measurements of molecularly mixed jet fluid fraction can be made on a pixel-by-pixel basis, while simultaneously allowing visualizations of large-structure behavior and regions of subresolution stirring. Instantaneous images of molecularly mixed jet fluid fraction and jet fluid mixing efficiency, probability density functions (PDFs) of mixed jet fluid fraction, and associated statistics are presented for Rejet=1000, 5000, 10,000, 50,000, and 100,000. For fully turbulent conditions (Rejet⩾30,000), stirring at subresolution scales is detected primarily on the jet side of the mixing layer. This creates a hybrid PDF behavior (stationary on the jet side of the mixing layer, marching on the co-flow side) that is not shown by passive scalar methods at equivalent image resolution.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1999
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2003
    In:  Applied Physics Letters Vol. 83, No. 9 ( 2003-09-01), p. 1887-1889
    In: Applied Physics Letters, AIP Publishing, Vol. 83, No. 9 ( 2003-09-01), p. 1887-1889
    Abstract: A dual-pump, electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy (CARS) technique for the measurement of minor species concentrations has been demonstrated. The frequency difference between a visible Raman pump beam and Stokes beam is tuned to a vibrational Q-branch Raman resonance of nitric oxide (NO) to create a Raman polarization in the medium. The second pump beam is tuned into resonance with rotational transitions in the (1,0) band of the A2Σ+–X2Π electronic transition at 236 nm, and the CARS signal is thus resonant with transitions in the (0,0) band. We observe significant resonant enhancement of the NO CARS signal and have obtained good agreement between calculated and experimental spectra.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2003
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...