GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 134, No. 21 ( 2011-06-07)
    Abstract: Hard-sphere fluids confined between parallel plates at a distance D apart are studied for a wide range of packing fractions including also the onset of crystallization, applying Monte Carlo simulation techniques and density functional theory. The walls repel the hard spheres (of diameter σ) with a Weeks-Chandler-Andersen (WCA) potential VWCA(z) = 4ε[(σw/z)12 − (σw/z)6 + 1/4], with range σw = σ/2. We vary the strength ε over a wide range and the case of simple hard walls is also treated for comparison. By the variation of ε one can change both the surface excess packing fraction and the wall-fluid (γwf) and wall-crystal (γwc) surface free energies. Several different methods to extract γwf and γwc from Monte Carlo (MC) simulations are implemented, and their accuracy and efficiency is comparatively discussed. The density functional theory (DFT) using fundamental measure functionals is found to be quantitatively accurate over a wide range of packing fractions; small deviations between DFT and MC near the fluid to crystal transition need to be studied further. Our results on density profiles near soft walls could be useful to interpret corresponding experiments with suitable colloidal dispersions.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 140, No. 20 ( 2014-05-28)
    Abstract: The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 & lt; N & lt; 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2008
    In:  The Journal of Chemical Physics Vol. 128, No. 23 ( 2008-06-21)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 128, No. 23 ( 2008-06-21)
    Abstract: We revisit the classical problem of a polymer confined in a slit in both of its static and dynamic aspects. We confirm a number of well known scaling predictions and analyze their range of validity by means of comprehensive molecular dynamics simulations using a coarse-grained bead-spring model of a flexible polymer chain. The normal and parallel components of the average end-to-end distance, mean radius of gyration and their distributions, the density profile, the force exerted on the slit walls, and the local bond orientation characteristics are obtained in slits of width D=4÷10 (in units of the bead diameter) and for chain lengths N=50÷300. We demonstrate that a wide range of static chain properties in normal direction can be described quantitatively by analytic model—independent expressions in perfect agreement with computer experiment. In particular, the observed profile of confinement-induced bond orientation is shown to closely match theory predictions. The anisotropy of confinement is found to be manifested most dramatically in the dynamic behavior of the polymer chain. We examine the relation between characteristic times for translational diffusion and lateral relaxation. It is demonstrated that the scaling predictions for lateral and normal relaxation times are in good agreement with our observations. A novel feature is the observed coupling of normal and lateral modes with two vastly different relaxation times. We show that the impact of grafting on lateral relaxation is equivalent to doubling the chain length.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2008
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2015
    In:  Physics of Fluids Vol. 27, No. 11 ( 2015-11-01)
    In: Physics of Fluids, AIP Publishing, Vol. 27, No. 11 ( 2015-11-01)
    Abstract: We consider inverse methods for predicting the channel bed topography in experiments of hydraulic falls. Nonlinear solutions and weakly nonlinear approximations from Euler-based models are compared to experimental observations. Accurate predictions are obtained for the maximum height of the topography and its constant horizontal level far downstream using the nonlinear method. The weakly nonlinear approximation is shown only to be a good predictor of the maximum height of the topography. The error in the inverse predictions is examined and discussed.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 138, No. 5 ( 2013-02-07)
    Abstract: A multiscale model for a colloid-polymer mixture is developed. The colloids are described as point particles interacting with each other and with the polymers with strongly repulsive potentials, while polymers interact with each other with a softer potential. The fluid in the suspension is taken into account by the multiparticle collision dynamics method (MPC). Considering a slit geometry where the suspension is confined between parallel repulsive walls, different possibilities for the hydrodynamic boundary conditions (b.c.) at the walls (slip versus stick) are treated. Quenching experiments are considered, where the system volume is suddenly reduced (keeping the density of the solvent fluid constant, while the colloid and polymer particle numbers are kept constant) and thus an initially homogeneous system is quenched deeply into the miscibility gap, where it is unstable. For various relative concentrations of colloids and polymers, the time evolution of the growing colloid-rich and polymer-rich domains are studied by molecular dynamics simulation, taking hydrodynamic effects mediated by the solvent into account via MPC. It is found that the domain size ℓd(t) grows with time t as ℓd(t) ∝ t1/3 for stick and (at late stages) as ℓd(t) ∝ t2/3 for slip b.c., while break-up of percolating structures can cause a transient “arrest” of growth. While these findings apply for films that are 5–10 colloid diameters wide, for ultrathin films (1.5 colloid diameters wide) a regime with ℓd(t) ∝ t1/2 is also identified for rather shallow quenches.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2012
    In:  The Journal of Chemical Physics Vol. 136, No. 13 ( 2012-04-07)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 136, No. 13 ( 2012-04-07)
    Abstract: The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equilibrium. We find fair agreement with a prediction based on Young's equation, using estimates of interface and wall tension from the study of flat surfaces. It is shown that the pressure versus density curve of the finite system exhibits a loop, but the pressure maximum signifies the “droplet evaporation-condensation” transition and thus has nothing in common with a van der Waals-like loop. Preparing systems where the packing fraction is deep inside the two-phase coexistence region, the system spontaneously forms a “slab state,” with two wall-attached crystalline domains separated by (flat) interfaces from liquid in full equilibrium with the crystal in between; analysis of such states allows a precise estimation of the bulk equilibrium properties at phase coexistence.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...