GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • ICYMARE 2021 – The conference for young marine researchers  (1)
  • 1
    Publication Date: 2019-09-23
    Description: Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO42−) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from ∼10 to 〉20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO42− profile ∼35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO42− the age of the most recent MTD is estimated to be 〈30 years. The mass movement was possibly related to an earthquake in 1988 (∼70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ICYMARE 2021 – The conference for young marine researchers
    In:  EPIC3Change in Polar Regions - Same same, but different?, Virtually, 2021-09-23-2021-09-23Bremen, Germany, ICYMARE 2021 – The conference for young marine researchers
    Publication Date: 2021-10-01
    Description: Antarctic shelf regions are potential carbon and nutrient cycling hotspots where rapid climatic changes are projected to affect seasonal sea ice cover, water column stratification, and thus surface primary production and associated fluxes of organic carbon to the seafloor. Here, we report on surface sediment oxygen profiles and respective fluxes in combination with pore water profiles of dissolved iron (DFe) and phosphate (PO43-) from 7 stations along a 400 mile transect with variable sea ice cover and water column stratification from the East Antarctic Peninsula to the west of South Orkney Islands. Our results show that sea ice concentrations and stratification of the upper water column decreased across the transect. We defined a marginal sea ice index of 5-35% sea ice cover which was positively correlated with the benthic carbon mineralization rate. C-mineralization rates increased gradually between the heavy ice-covered station and the marginal sea ice stations from 1.1 to 7.3 mmol C m-2 d-1, respectively. The rates decreased again to 1.8 mmol C m-2 d-1 at the ice-free station, likely attributed to a deeper water column mixed layer depth, which decreases primary production and thus organic carbon export to the sediment. Iron cycling in the sediment was elevated at the marginal sea ice stations where Fe-reduction led to DFe fluxes in the pore water of up to 0.379 mmol DFe m-2 d-1, while moderate (0.068 mmol DFe m-2 d-1) and negligible fluxes were observed at ice-free and ice-covered stations, respectively. In pore waters, concentrations of DFe and PO43- were significantly correlated with almost identical flux ratios of 0.33 mol PO43- per mol DFe for most of the stations, indicating a strong control of the iron cycling on the phosphate release to the water column. The high benthic DFe and PO43- fluxes highlight the importance of sediments underlying the marginal ice zone as source for limiting nutrients to the shelf waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...