GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-11
    Description: When volcanic mountains slide into the sea, they trigger tsunamis. How big are these waves, and how far away can they do damage? Ritter Island provides some answers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 121 (3). pp. 1405-1424.
    Publication Date: 2019-09-23
    Description: A bottom-simulating reflector (BSR) occurs west of Svalbard in water depths exceeding 600 m, indicating that gas hydrate occurrence in marine sediments is more widespread in this region than anywhere else on the eastern North Atlantic margin. Regional BSR mapping shows the presence of hydrate and free gas in several areas, with the largest area located north of the Knipovich Ridge, a slow-spreading ridge segment of the Mid Atlantic Ridge system. Here, heat flow is high (up to 330 mW m-2), increasing towards the ridge axis. The coinciding maxima in across-margin BSR width and heat flow suggest that the Knipovich Ridge influenced methane generation in this area. This is supported by recent finds of thermogenic methane at cold seeps north of the ridge termination. To evaluate the source rock potential on the western Svalbard margin, we applied 1D petroleum system modeling at three sites. The modeling shows that temperature and burial conditions near the ridge were sufficient to produce hydrocarbons. The bulk petroleum mass produced since the Eocene is at least 5 kt and could be as high as ~0.2 Mt. Most likely, source rocks are Miocene organic-rich sediments and a potential Eocene source rock that may exist in the area if early rifting created sufficiently deep depocenters. Thermogenic methane production could thus explain the more widespread presence of gas hydrates north of the Knipovich Ridge. The presence of microbial methane on the upper continental slope and shelf indicates that the origin of methane on the Svalbard margin varies spatially.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-24
    Description: During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 105 (B12). 28,443-28,454.
    Publication Date: 2018-01-09
    Description: Multichannel seismic reflection profiles in the Hel Graben, V0ring Basin, reveal a sill complex at approximately 5 km depth. It is associated with exceptionally high, 7.4 km s−1, seismic wide-angle velocities. The existence of observable wide- angle arrivals shows that the sills act as efficient waveguides. Seismic reflection data and amplitude modeling constrain the thickness of individual sills to approximately 100 m. Sonic logs from sills of similar thickness on the nearby Utgard High show an average velocity of 7.0 km s−1. Such high velocities require an olivine-gabbroic sill composition and emplacement under conditions which allowed growth of relatively large crystal sizes. A possible reason for such an emplacement environment is the HeI Graben's role as an intrusion center during breakup volcanism. This would provide the necessary duration of the magmatic activity as well as locally increased melt volumes and cooling times. Sill complexes of this kind decrease the accuracy of determined velocity fields and crustal geometries below the top of the sill complex, affecting depth conversion and gravity modeling. Furthermore, the results question the concept of lower crustal bodies as large-scale, homogeneous accumulations of mafic melt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-24
    Description: Methane seepage at south Hydrate Ridge (offshore Oregon, United States), one of the best-studied examples of gas venting through gas hydrates, is the seafloor expression of a vigorous fluid flow system at depth. The seeps host chemosynthetic ecosystems and release significant amounts of carbon into the ocean. With new three-dimensional seismic data, we image strata and structures beneath the ridge in unprecedented detail to determine the geological processes controlling the style of focused fluid flow. Numerical fluid flow simulations reveal the influence of free gas within a stratigraphic unit known as Horizon A, beneath the base of gas hydrate stability (BGHS). Free gas within Horizon A increases the total mobility of the composite water-gas fluid, resulting in high fluid flux that accumulates at the intersection between Horizon A and the BGHS. This intersection controls the development of fluid overpressure at the BGHS, and together with a well-defined network of faults, reveals the link between the gas hydrate system at depth and methane seepage at the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-27
    Description: Active gas venting occurs on the uppermost continental slope off west Svalbard, close to and upslope from the present-day intersection of the base of methane hydrate stability (BMHS) with the seabed in about 400 m water depth in the inter-fan region between the Kongsfjorden and Isfjorden cross-shelf troughs. From an integrated analysis of high-resolution, two-dimensional, pre-stack migrated seismic reflection profiles and multibeam bathymetric data, we map out a bottom simulating reflector (BSR) in the inter-fan region and analyze the subsurface gas migration and accumulation. Gas seeps mostly occur in the zone from which the BMHS at the seabed has retreated over the recent past (1975–2008) as a consequence of a bottom water temperature rise of 1°C. The overall margin-parallel alignment of the gas seeps is not related to fault-controlled gas migration, as seismic evidence of faults is absent. There is no evidence for a BSR close to the gas flare region in the upper slope but numerous gas pockets exist directly below the predicted BMHS. While the contour following trend of the gas seeps could be a consequence of retreat of the landward limit of the BMHS and gas hydrate dissociation, the scattered distribution of seeps within the probable hydrate dissociation corridor and the occurrence of a cluster of seeps outside the predicted BMHS limit and near the shelf break indicate the role of lithological heterogeneity in focusing gas migration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-27
    Description: Extension of the continental lithosphere leads to the formation of rift basins or rifted continental margins if breakup occurs. Seismic investigations have repeatedly shown that conjugate margins have asymmetric tectonic structures and different amount of extension and crustal thinning. Here we compare two coincident wide-angle and multichannel seismic profiles across the northern Tyrrhenian rift system sampling crust that underwent different stages of extension from north to south and from the flanks to the basin center. Tomographic inversion reveals that the crust has thinned homogeneously from ~24 km to ~17 km between the Corsica Margin and the Latium Margin implying a β factor of ~1.3–1.5. On the transect 80 km to the south, the crust thinned from ~24 km beneath Sardinia to a maximum of ~11 km in the eastern region near the Campania Margin (β factor of ~2.2). The increased crustal thinning is accompanied by a zone of reduced velocities in the upper crust that expands progressively toward the southeast. We interpret that the velocity reduction is related to rock fracturing caused by a higher degree of brittle faulting, as observed on multichannel seismic images. Locally, basalt flows are imaged intruding sediment in this zone, and heat flow values locally exceed 100 mW/m2. Velocities within the entire crust range 4.0–6.7 km/s, which are typical for continental rocks and indicate that significant rift-related magmatic underplating may not be present. The characteristics of the pre-tectonic, syn-tectonic and post-tectonic sedimentary units allow us to infer the spatial and temporal evolution of active rifting. In the western part of the southern transect, thick postrift sediments were deposited in half grabens that are bounded by large fault blocks. Fault spacing and block size diminish to the east as crustal thinning increases. Recent tectonic activity is expressed by faults cutting the seafloor in the east, near the mainland of Italy. The two transects show the evolution from the less extended rift in the north with a fairly symmetric conjugate structure to the asymmetric margins farther south. This structural evolution is consistent with W-E rift propagation and southward increasing extension rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-24
    Description: The upward migration of gas through marine sediments typically manifests itself as gas chimneys or pipes in seismic images and can lead to the formation of cold seeps. Gas seepage is often linked to morphological features like seabed domes, pockmarks, and carbonate build-ups. In this context, sediment doming is discussed to be a precursor of pockmark formation. Here, we present parametric echosounder, sidescan sonar, and two-dimensional seismic data from Opouawe Bank, offshore New Zealand, providing field evidence for sediment doming. Geomechanical quantification of the stresses required for doming show that the calculated gas column heights are geologically feasible and consistent with the observed geophysical data. The progression from channeled gas flow to gas trapping results in overpressure build-up in the shallow sediment. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop, but contrary to ongoing discussion this does not necessarily lead to the formation of pockmarks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Earth Surface, 112 . F02001.
    Publication Date: 2021-05-11
    Description: Spreading is a common type of ground failure in subaerial environments. However, this type of mass movement has hardly been documented in submarine settings. In this paper we show that spreading covers at least 25% of the Storegga Slide scar area, a giant submarine slide located offshore mid-Norway. The morphological signature of spreading is a repetitive pattern of ridges and troughs oriented perpendicular to the direction of movement. Two modes of failure can be identified: retrogressive failure of the headwall and slab failure and extension, both involving the breakup of a sediment unit into coherent blocks. These blocks are displaced downslope along planar slip surfaces. Limit equilibrium modeling indicates that loss of support and seismic loading are the main potential triggering mechanisms. The extent of displacement of the spreading sediment is controlled by gravitationally induced stress, angle of internal friction of the sediment, pore pressure escape, and friction. The resulting block movement pattern entails an exponential increase of displacement and thinning of the failing sediment with distance downslope. Sediment properties explain the remaining spatial variation of ridge and trough morphologies associated with spreading.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 10 (Q04009).
    Publication Date: 2018-03-14
    Description: [1] The present geological setting west of Svalbard closely parallels the situation off mid-Norway after the last glaciation, when crustal unloading by melting of ice induced very large earthquakes. Today, on the modern Svalbard margin, increasing bottom water temperatures are destabilizing marine gas hydrates, which are held in continental margin sediments consisting of interlayered contourite deposits and glacigenic debris flows. Both unloading earthquakes and hydrate failure have been identified as key factors causing several megalandslides off Norway during early Holocene deglaciation. The most prominent event was the Storegga Slide 8200 years B.P. which caused a tsunami up to 23 m high on the Faroe and Shetland islands. Here we show by numerical tsunami modeling that a smaller submarine landslide west of Svalbard, 100 m high and 130 km wide, would cause a tsunami capable of reaching northwest Europe and threatening coastal areas. A tsunami warning system based on tiltmeters would give a warning time of 1–4 h.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...