GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-16
    Description: Submarine landslides can destroy seafloor infrastructure and generate devastating tsunamis, but in spite of decades of research into the functioning of submarine landslides there are still numerous open questions in particular how different phases of sliding influence each other. Here, we re-analyse the Ana Slide - a relatively small (〈1 km3) landslide in the Balearic Islands, which is unique because it is completely imaged by high-resolution 3D seismic data. The Ana Slide comprises three domains: (i) a source area that is almost completely evacuated with evidence of headscarp retrogression; (ii) an adjacent downslope translational domain representing a bypass zone for the material that was mobilized in the source area, and (iii) the deposit formed by the mobilized material, which accumulated downslope in a sink area. Isochron maps show deep chaotic seismic units underneath the thickest deposits. We infer that rapid deposition of the landslide material deformed the underlying sediments. A thin stratified sedimentary unit between three lobes shows that the Ana Slide evolved in two failure stages separated by several tens of thousands of years. This illustrates the danger of over-estimating the volume of mobilized material and under-estimating the complexity even of relatively simple slope failures without high-quality seismic data.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Submarine landslides can destroy seafloor infrastructure and generate devastating tsunamis, but in spite of decades of research into the functioning of submarine landslides there are still numerous open questions in particular how different phases of sliding influence each other. Here, we re-analyse the Ana Slide - a relatively small (〈1 km3) landslide in the Balearic Islands, which is unique because it is completely imaged by high-resolution 3D seismic data. The Ana Slide comprises three domains: (i) a source area that is almost completely evacuated with evidence of headscarp retrogression; (ii) an adjacent downslope translational domain representing a bypass zone for the material that was mobilized in the source area, and (iii) the deposit formed by the mobilized material, which accumulated downslope in a sink area. Isochron maps show deep chaotic seismic units underneath the thickest deposits. We infer that rapid deposition of the landslide material deformed the underlying sediments. A thin stratified sedimentary unit between three lobes shows that the Ana Slide evolved in two failure stages separated by several tens of thousands of years. This illustrates the danger of over-estimating the volume of mobilized material and under-estimating the complexity even of relatively simple slope failures without high-quality seismic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-08
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH 〉5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH 〉3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH 〉1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
    Description: The NEAMTHM18 was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations with grant no. ECHO/SUB/2015/718568/PREV26 (https://ec.europa.eu/echo/funding-evaluations/financing-civil-protection-europe/selected-projects/probabilistic-tsunami-hazard_en). The work by INGV authors also benefitted from funding by the INGV-DPC Agreement 2012-2021 (Annex B2).
    Description: Published
    Description: 616594
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: 5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
    Description: 3IT. Calcolo scientifico
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: probabilistic tsunami hazard assessment ; earthquake-generated tsunami ; hazard uncertainty analysis ; ensemble modeling ; maximum inundation height ; NEAM ; 05.08. Risk ; 03.02. Hydrology ; 04.06. Seismology ; 04.07. Tectonophysics ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...