GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-02
    Description: The Multitracers Experiment studied a transect of water column, sediment trap, and sediment data taken across the California Current to develop quantitative methods for hindcasting paleoproductivity. The experiment used three sediment trap moorings located 120 km, 270 km, and 630 km from shore at the Oregon/California border in North America. We report here about the sedimentation and burial of particulate organic carbon (Corg) and CaCO3. In order to observe how the integrated CaCO3 and Corg burial across the transect has changed since the last glacial maximum, we have correlated core from the three sites using time scales constrained by both radiocarbon and oxygen isotopes. By comparing surface sediments to a two-and-a-half year sediment trap record, we have also defined the modern preservation rates for many of the labile sedimentary materials. Our analysis of the Corg data indicates that significant amounts (20–40%) of the total Corg being buried today in surface sediments is terrestrial. At the last glacial maximum, the terrestrial Corg fraction within 300 km of the coast was about twice as large. Such large fluxes of terrestrial Corg obscure the marine Corg record, which can be interpreted as productivity. When we corrected for the terrestrial organic matter, we found that the mass accumulation rate of marine Corg roughly doubled from the glacial maximum to the present. Because preservation rates of organic carbon are high in the high sedimentation rate cores, corrections for degradation are straightforward and we can be confident that organic carbon rain rate (new productivity) also doubled. As confirmation, the highest burial fluxes of other biogenic components (opal and Ba) also occur in the Holocene. Productivity off Oregon has thus increased dramatically since the last glacial maximum. CaCO3 fluxes also changed radically through the deglaciation; however, they are linked not to CaCO3 production but rather to changes in deepwater carbonate chemistry between 18 Ka and now.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Active fluid venting was observed for the first time along the Aleutian convergent margin during RV SONNE cruise 97. These subduction-induced cold vents were subsequently investigated in detail during cruise SO 110 in the summer of 1996 using the Canadian remotely operated vehicle, ROPOS. Active sites of dewatering were found at the youngest deformation structure adjacent to the decollement zone. High concentrations of reduced gases in the escaping fluids provide the nutritional and energy basis for the observed chemosynthetic communities in which clams and tubeworms dominate. Further evidence for fluid venting comes from the mineral precipitates of barite and carbonates.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2018-12-19
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-20
    Description: Plate collision cuases expulsion of fluids and gases and material turnover in the deep ocean along the global subduction zones. Such cold vents are characterized by mineral precipitates and characteristic assemblages of macro organisms. The latter harbor symbiotic bacteria which utilize the chemically-reduced constituents (CH4 and H2S) of the expelled fluids as their energy and supply their host with food. The interaction between tectonically-induced fluid flow and pumping activity of the vent fauna sets up a shallow recirculation system whose magnitude can be estimated from direct measurements by an in situ vent sampling device (VESP) in connection with tracer studies. The dewatering rates based on the biogeochemical estimates agree surprisingly well with those derived from geophysical estimates.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Ernst & Sohn
    In:  Geowissenschaften, 15 . pp. 181-184.
    Publication Date: 2016-06-02
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 9 (3). pp. 351-358.
    Publication Date: 2018-07-17
    Description: Measurements of dissolved methane in the surface waters of the western Sea of Okhotsk are evaluated in terms of methane exchange rates and are used to assess the magnitude of seasonal variations of methane fluxes from the ocean to the atmosphere in this area. Methane concentrations northeast of Sakhalin were observed to range from 385 nmol L−1 under the ice cover in winter to 6 nmol L−1 in the icefree midsummer season. The magnitude of supersaturations indicates that this part of the Okhotsk Sea is a significant source for atmospheric methane. From the seasonal variation of the supersaturations in the surface waters it is evident that the air-sea exchange is interrupted during the winter and methane from sedimentary sources accumulates under the ice cover. According to our measurements an initial early summer methane pulse into the atmosphere of the order of 560 mol km−2 d−1 can be expected when the supersaturated surface waters are exposed by the retreating ice. The methane flux in July is approximately 150 mol km−2 d−1 which is of the order of the average annual flux in the survey area. The magnitude of the seasonal CH4 flux variation northeast of Sakhalin corresponds to an amount of 7.3 × 105 g km−2 whereby 74% or 5.4 × 105 g km−2 are supplied to the atmosphere between April and July. For the whole Sea of Okhotsk the annual methane flux is roughly 0.13 × 1012 g (terragrams), based on the assumption that 15% of the entire area emit methane. Variations of long-term data of atmospheric methane which are recorded at the same latitude adjacent to areas with seasonal ice cover show a regional methane pulse between April and July. The large-scale level of atmospheric methane in the northern hemisphere undergoes an amplitudinal variation of about 25 parts per billion by volume (ppbv) which translates into approximately 36 Tg. Thus the estimated 0.6 Tg of ice-induced methane dynamics in northern latitudes can hardly explain this seasonal signal. However, the effects of seasonal ice cover on pulsed release of methane appear strong enough to contribute, in concert with other seasonal sources, to characteristic short-term wobbles in the atmospheric methane budget which are observed between 50°N and 60°N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 18 (2). GB2012.
    Publication Date: 2018-03-16
    Description: The physical, chemical/biological processes that control the methane dynamics in the Weddell Sea are revealed by the distributions of methane (CH4), its stable carbon isotope ratio, δ13C-CH4, and the conservative transient tracer, chlorofluorocarbon-11 (CFC-11, CCl3F). In general, a nearly linear correlation between CH4 and CFC-11 concentrations was observed. Air-sea exchange is the major source of methane to this region, and the distribution of methane is controlled mainly by mixing between surface water and methane-poor Warm Deep Water. A significant influence of methane oxidation over the predominant two end-member mixing was only found in the Weddell Sea Bottom Water (WSBW) of the deep central Weddell Basin, where the turnover time of methane appears to be about 20 years. Mixing also controls most of the δ13C-CH4 distribution, but lighter than expected carbon isotopic ratios occur in the deep WSBW of the basin. From box model simulations, it appears that this “anomaly” is due to methane oxidation with a low kinetic isotope fractionation of about 1.004. The surface waters in the Weddell Sea and the Antarctic Circumpolar Current showed a general methane undersaturation of 6 to 25% with respect to the atmospheric mixing ratio. From this undersaturation and model-derived air-sea exchange rates, we estimate a net uptake of CH4 of roughly −0.5 μmol m−2 d−1 during austral autumn.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Natural Gas Hydrates: Occurrence, Distribution, and Detection. , ed. by Paull, C. K. and Dillon, W. P. Geophysical Monograph Series, 124 . AGU (American Geophysical Union), Washington, DC, pp. 99-113. ISBN 0-87590-982-5
    Publication Date: 2016-01-28
    Description: Hydrate Ridge is part of the accretionary complex at the Cascadia margin and is an area of widespread carbonate precipitation induced by the expulsion of methane-rich fluids. All carbonates on Hydrate Ridge are related to the methanecarbon pool either through anaerobic methanotrophy or through methanogenesis. Several petrographically distinct lithologies occur in boulder fields or in massive autochtonous chemoherm complexes which include methane-associated diagenetic mudstones and venting-induced breccias. The mudstones result from methane diagenesis in different sediment horizons and geochemical environments related to very slow methane venting. Cemented bioturbation casts occur as fragments, complex framework or as clasts together with bivalve shells as part of intraformational breccias, which are restricted to chemoherm complexes. Here, fluids ascend from the sub-seafloor and support aragonite-dominated carbonate precipitation near or at the sediment surface. Voids within mudclast breccias are either aragonite-rich indicating a formation near the surface at vent sites or are cemented by dolomite, which indicates formation in deeper parts of the sediment column. Brecciation is caused by tectonic or slump processes. In addition, we recognized a direct relationship between gas hydrates and sediment fracturing as well as the oxygen isotope composition of carbonate lithologies. Such gas hydrate-associated carbonates either show layered megapores and veins as relics of the original gas hydrate fabric or consist of aragonite-cemented intraclast breccias formed by growing and decomposing gas hydrate near the sediment surface. Both rock fabrics and the enrichment of 180 in high Mg-calcite demonstrate carbonate-forming mechanisms of gas hydrate.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 104 . pp. 1663-1678.
    Publication Date: 2017-11-24
    Description: A spectrum of halogenated hydrocarbon compounds in marine air masses were surveyed over an area in the western Pacific between 43°N, 150°E and 4°N, 113°E in September 1994. The ship's track between northern Japan and Singapore traversed three climatic zones of the northern hemisphere. Recently polluted air, clean marine air derived from the central Pacific Ocean from different latitudes, and marine air from the Indonesian archipelago were collected. Tetrachloroethene and trichloroethene of anthropogenic origin, brominated halocarbons as tribromomethane, dibromochloromethane and bromodichloromethane of anthropogenic and natural sources, and other trace gases were measured in the air samples. Very sparse data on the distribution of these compounds exist for the western Pacific atmosphere. The distribution patterns of the compounds were related to synoptic-scale meteorology, spatial conditions, and origin of the air masses. Anthropogenic and natural sources for both chlorinated and brominated substances were identified. Tetrachloroethene and trichloroethene concentrations and their ratios identify anthropogenic sources. Their mixing ratios were quite low compared to previously published data. They are in agreement with expected low concentrations of photochemically active substances during autumn, with an overall decrease in concentrations toward lower latitudes, and with a decrease of emissions during recent years. Strong evidence for a natural source of trichloroethene was discovered in the tropical region. The concentrations of naturally released brominated species were high compared to other measurements over the Pacific. Gradients toward the coasts and elevated concentrations in air masses influenced by coastal emissions point to significant coastal sources of these compounds. The trace gas composition of anthropogenic and natural compounds clearly identified the air masses which were traversed during the cruise.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...