GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • Elsevier  (1)
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 93 (13). p. 112.
    Publication Date: 2017-02-10
    Description: Arctic in Rapid Transition Implementation Workshop; Winnipeg, Manitoba, Canada, 18–20 October 2010; Rapid transitions in Arctic sea ice and the associated global integrated Earth system impacts and socioeconomic consequences have brought the Arctic Ocean to the top of national and international geophysical and political agendas. Alarmingly, there is a persistent mismatch between observed and predicted patterns, which speaks to the complexity of planning adaptation and mitigation activities in the Arctic. Predicting future conditions of Arctic marine ecosystems for climate change requires interdisciplinary and pan-Arctic characterization and understanding of past and present trends. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary, pan-Arctic network to study spatial and temporal changes in sea ice cover and ocean circulation over broad time scales to better understand and forecast the impact of these changes on Arctic marine ecosystems and biogeochemistry. The ART initiative began in October 2008 and is still led by early-career scientists. The ART science plan, developed after the ART initiation workshop in November 2009, was endorsed by the Arctic Ocean Sciences Board, which is now the Marine Working Group of the International Arctic Science Committee.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-07
    Description: An understanding of microbial interactions in first-year sea ice on Arctic shelves is essential for identifying potential responses of the Arctic Ocean carbon cycle to changing sea-ice conditions. This study assessed dissolved and particulate organic carbon (DOC, POC), exopolymeric substances (EPS), chlorophyll a, bacteria and protists, in a seasonal (24 February to 20 June 2004) investigation of first-year sea ice and associated surface waters on the Mackenzie Shelf. The dynamics of and relationships between different sea-ice carbon pools were investigated for the periods prior to, during and following the sea-ice-algal bloom, under high and low snow cover. A predominantly heterotrophic sea-ice community was observed prior to the ice-algal bloom under high snow cover only. However, the heterotrophic community persisted throughout the study with bacteria accounting for, on average, 44% of the non-diatom particulate carbon biomass overall the study period. There was an extensive accumulation of sea-ice organic carbon following the onset of the ice-algal bloom, with diatoms driving seasonal and spatial trends in particulate sea-ice biomass. DOC and EPS were also significant sea-ice carbon contributors such that sea-ice DOC concentrations were higher than, or equivalent to, sea-ice-algal carbon concentrations prior to and following the algal bloom, respectively. Sea-ice-algal carbon, DOC and EPS-carbon concentrations were significantly interrelated under high and low snow cover during the algal bloom (r values ≥ 0.74, p 〈 0.01). These relationships suggest that algae are primarily responsible for the large pools of DOC and EPS-carbon and that similar stressors and/or processes could be involved in regulating their release. This study demonstrates that DOC can play a major role in organic carbon cycling on Arctic shelves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...