GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (3)
  • Elsevier  (3)
  • 1
    Publication Date: 2020-02-06
    Description: The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf–Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between −16.8 and −14.9 at the surface to more radiogenic values near −11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to −11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ −4) and North East Atlantic Deep Water (ɛHf ∼ −0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ −2) and deep Labrador Sea Water (ɛHf ∼ −4.5). The latter layer was formed between the late 1980’s and mid 1990’s during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A 〉100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The nitrogen cycle is fundamental to Earth's biogeochemistry. Yet major uncertainties of quantification remain, particularly regarding the global oceanic nitrogen fixation rate. Hydrogen is produced during nitrogen fixation and will become supersaturated in surface waters if there is net release from diazotrophs. Ocean surveys of hydrogen supersaturation thus have the potential to illustrate the spatial and temporal distribution of nitrogen fixation, and to guide the far more onerous but quantitative methods for measuring it. Here we present the first transect of high resolution measurements of hydrogen supersaturations in surface waters along a meridional 10,000 km cruise track through the Atlantic. We compare measured saturations with published measurements of nitrogen fixation rates and also with model-derived values. If the primary source of excess hydrogen is nitrogen fixation and has a hydrogen release ratio similar to Trichodesmium, our hydrogen measurements would point to similar rates of fixation in the North and South Atlantic, roughly consistent with modelled fixation rates but not with measured rates, which are lower in the south. Possible explanations would include any substantial nitrogen fixation by newly discovered diazotrophs, particularly any having a hydrogen release ratio similar to or exceeding that of Trichodesmium; under-sampling of nitrogen fixation south of the equator related to excessive focus on Trichodesmium; and methodological shortcomings of nitrogen fixation techniques that cause a bias towards colonial diazotrophs relative to unicellular forms. Alternatively our data are affected by an unknown hydrogen source that is greater in the southern half of the cruise track than the northern.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights • Sea-ice cover limits the accumulation of both coccoliths and alkenones in sediments. • Calcite dissolution in shelf sediments may explain the accumulation of alkenones in the presence of few or no coccoliths. • Non-calcifying haptophytes most likely produce alkenones in nearshore environments. Abstract We determined the abundances and concentrations of coccoliths and alkenones in 66 surface sediment samples from the northwest North Atlantic to evaluate the role that surface ocean temperature, salinity, sea-ice cover, and productivity have on the regional distribution of these two biological remains produced by haptophytes in the photic zone. In areas with sea-ice cover of more than 1 month per year, coccolith and alkenone concentrations in sediments are extremely low to nil. Elsewhere, the distribution of coccolith taxa generally displays strong relationships to water temperature, salinity, and productivity. Coccolithus pelagicus is associated with low summer sea-surface temperatures (〈8°C) and relatively high summer sea-surface salinities (〉33.5), whereas Helicosphaera carteri seems to follow the path of the North Atlantic Drift. The distribution of Emiliania huxleyi, the dominant alkenone producer, is not strongly correlated with that of alkenones. Calcite dissolution in shelf sediments could explain the occurrence of alkenones in the absence of coccoliths but alkenone production by non-calcifying haptophytes seems to also exert some control on alkenone concentrations in surface sediments, thus blurring alkenone abundance links to coccolithophorid production and their relative preservation.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Limited constraints on the variability of the deep-water production in the Labrador Sea complicate reconstructions of the strength of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Quaternary. Large volumes of detrital carbonates were repeatedly deposited in the Labrador Sea during the last 32 kyr, potentially affecting radiogenic Nd isotope signatures. To investigate this the Nd isotope compositions of deep and intermediate waters were extracted from the authigenic Fe-Mn oxyhydroxide fraction, foraminiferal coatings, the residual silicates and leachates of dolostone grains. We provide a first order estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. During the Last Glacial Maximum the Nd isotope signatures in the Labrador Sea would allow active water mass mixing with more radiogenic ɛNd values (-12.6 and -14) prevailing in its eastern part whereas less radiogenic values (ɛNd ∼ -18.4) were found on the western Labrador slope. The deposition of detrital carbonates during Heinrich stadials (2,1) was accompanied by negative detrital and authigenic Nd isotope excursions (ɛNd ∼ -31) that were likely controlled by dissolution of dolostone or dolostone associated mineral inclusions. This highly unradiogenic signal dominated the authigenic phases and individual water masses in the Labrador Sea, serving as potential source of highly unradiogenic Nd to the North Atlantic region, while exported southward. The Holocene authigenic ɛNd signatures of the coatings and leachates significantly differed from those of the detrital silicates, approaching modern bottom water mass signatures during the Late Holocene. Key Points - Estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea - Dissolution of detrital dolostones in the water column during Heinrich stadials at least partially controlled ɛNd signatures - During the LGM generally more radiogenic signatures possibly indicate active water mass advection and mixing in the Labrador Sea
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights • Porewater calcite dissolution may have occurred during the deglacial interval. • There is a significant decoupling of coccolith and alkenone concentrations in core 004. • Non-calcifying haptophytes most likely produced the alkenones in the glacial interval. Abstract The important changes that took place in the glacial cycle at the termination, from the Last Glacial Maximum to the present interglacial, deserve an examination of ocean sedimentary records that document past productivity, carbon fluxes, and carbonate preservation. In this study, we analyzed coccoliths, alkenones, and foraminifers in core HU2008–029-004 PC (61.46°N and 58.04°W, water depth = 2,674 m) from the northwestern Labrador Sea to document linkages between hydrographic conditions, biogenic carbonate fluxes to the seafloor, and their preservation/dissolution during the last 25,000 years. Large changes in coccolith and foraminifer concentrations are recorded, with sediments from the last glacial interval containing significantly less carbonate microfossils (9.5 ± 3.9 × 105 coccoliths g−1 and 2,860 ± 580 planktonic foraminifers g−1) than sediments from the deglacial and postglacial intervals (up to 3.1 × 108 coccoliths g−1 and 2.9 × 104 foraminifers g−1). Three foraminifer-based calcite dissolution indices were used to evaluate biogenic carbonate preservation: the planktonic foraminifer fragmentation index, the ratio of benthic-to-planktonic foraminifers (B/P), and the ratio of organic linings to benthic foraminifers (OL/B). Fragmentation remained low throughout the postglacial (mean of 4%) but reached up to 8% in the deglacial and peaked at 16% in samples from the Bølling-Allerød of the late glacial interval. Samples from the Bølling-Allerød and the deglacial interval also display a slightly elevated B/P index (〉0.15), which suggests that some dissolution may have occurred. In contrast, with the exception of the Bølling-Allerød and the deglacial interval, near zero OL/B values characterize most of the sequence, suggesting good biogenic carbonate preservation, which implies that the low biogenic carbonate and coccolith content in sediments of the glacial stage mirror low productivity of calcifying organisms. The elevated fragmentation of foraminifers during the Bølling-Allerød and the deglacial interval, a time of elevated productivity and low percentages of ice-rafted debris, may indicate the development of calcite undersaturated porewaters and consequent dissolution resulting from oxic remineralization of sedimentary organic matter. We also identify a significant decoupling of coccolith and alkenone concentrations throughout the core. Colder-than-expected UK37-SST estimates from the alkenones of the glacial interval rule out possible allochthonous inputs from lower-latitude locations. Instead, our records imply that at least during the glacial interval, alkenones were produced by non-calcifying haptophytes that may not follow the canonical UK37-based temperature calibrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...