GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (17)
  • Springer  (17)
  • American Society of Limnology and Oceanography  (2)
  • 1
    Publication Date: 2020-02-06
    Description: This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa 〉0.7) with the Bayesian approach which also correlates well with ground truth data (r2 〉 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: We present a comprehensive study showing new results from a shallow gas seep area in approximate to 40 m water depth located in the North Sea, Netherlands sector B13 that we call Dutch Dogger Bank seep area. It has been postulated that methane presumably originating from a gas reservoir in approximate to 600 m depth below the seafloor is naturally leaking to the seafloor. Our ship-based subbottom echosounder data indicate that the migrating gas is trapped in numerous gas pockets in the shallow sediments. The gas pockets are located at the boundary between the top of the Late Pliocene section and overlying fine-grained sediments, which were deposited during the early Holocene marine transgression after the last glaciation. We mapped gas emissions during three R/V Heincke cruises in 2014, 2015, and 2016 and repeatedly observed up to 850 flares in the study area. Most of them (approximate to 80%) were concentrated at five flare clusters. Our repeated analysis revealed spatial similarities of seep clusters, but also heterogeneities in emission intensities. A first calculation of the methane released from these clusters into the water column revealed a flow rate of 277 L/min (SD=140), with two clusters emitting 132 and 142 L/min representing the most significant seepage sites. Above these two flare clusters, elevated methane concentrations were recorded in atmospheric measurements. Our results illustrate the effective transport of methane via gas bubbles through a approximate to 40 m water column, and furthermore provide an estimate of the emission rate needed to allow for a contribution to the atmospheric methane concentration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The Vestnesa Ridge comprises a 〉100 km long sediment drift located between the western continental slope of Svalbard and the Arctic mid-ocean ridges. It hosts a deep water (〉1000 m) gas hydrate and associated seafloor seepage system. Near-seafloor headspace gas compositions and its methane carbon isotopic signature along the ridge indicate a predominance of thermogenic gas sources feeding the system. Prediction of the base of the gas hydrate stability zone for theoretical pressure and temperature conditions and measured gas compositions results in an unusual underestimation of the observed bottom-simulating reflector (BSR) depth. The BSR is up to 60 m deeper than predicted for pure methane and measured gas compositions with 〉99% methane. Models for measured gas compositions with 〉4% higher-order hydrocarbons result in a better BSR approximation. However, the BSR remains 〉20 m deeper than predicted in a region without active seepage. A BSR deeper than predicted is primarily explained by unaccounted spatial variations in the geothermal gradient and by larger amounts of thermogenic gas at the base of the gas hydrate stability zone. Hydrates containing higher-order hydrocarbons form at greater depths and higher temperatures and contribute with larger amounts of carbons than pure methane hydrates. In thermogenic provinces, this may imply a significant upward revision (up to 50% in the case of Vestnesa Ridge) of the amount of carbon in gas hydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Seafloor elongated depressions are indicators of gas seepage or slope instability. Here we report a sequence of slope-parallel elongated depressions that link to headwalls of sediment slides on upper slope. The depressions of about 250 m in width and several kilometers in length are areas of focused gas discharge indicated by bubble-release into the water column and methane enriched pore waters. Sparker seismic profiles running perpendicular and parallel to the coast, show gas migration pathways and trapped gas underneath these depressions with bright spots and seismic blanking. The data indicate that upward gas migration is the initial reason for fracturing sedimentary layers. In the top sediment where two young stages of landslides can be detected, the slope-parallel sediment weakening lengthens and deepens the surficial fractures, creating the elongated depressions in the seafloor supported by sediment erosion due to slope-parallel water currents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-14
    Description: The current topographic maps of the Rhone Delta—and of Lake Geneva in general—are mainly based on hydrographic data that were acquired during the time of F.-A. Forel at the end of the nineteenth century. In this paper we present results of a new bathymetric survey, based on single- and multi-beam echosounder data. The new data, presented as a digital terrain model, show a well-structured lake bottom morphology, reflecting depositional and erosional processes that shape the lake floor. As a major geomorphologic element, the sub-aquatic Rhone Delta extends from the coastal platform to the depositional fans of the central plain of the lake at 310 m depth. 9 canyons cut the platform edge of the delta. These are sinuous (“meandering”) channels formed by erosional and depositional processes, as indicated by the steep erosional canyon walls and the depositional levees on the canyon shoulders. Ripples or dune-like morphologies wrinkle the canyon bottoms and some slope areas. Subaquatic mass movements are apparently missing on the delta and are of minor importance on the lateral lake slopes. Morphologies of the underlying bedrock and small local river deltas are located along the lateral slopes of Lake Geneva. Based on historical maps, the recent history of the Rhone River connection to the sub-aquatic delta and the canyons is reconstructed. The transition from three to two river branches dates to 1830–1840, when the river branch to the Le Bouveret lake bay was cut. The transition from two to one river branch corresponds to the achievement of the correction and dam construction work on the modern Rhone River channel between 1870 and 1880.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  Geo-Marine Letters, 24 (2). pp. 75-85.
    Publication Date: 2017-05-24
    Description: Hydroacoustic methods are particularly suitable for investigations of the occurrence, cyclicity and amount of bubbles released at cold seeps without disturbing them. Experiments with a horizontally looking single beam transducer (40 and 300 kHz) directed towards artificially produced bubbles show that the backscattering strength of the bubbles increases with the gas flux rate independently of the bubble radii distribution. It is demonstrated that an acoustic system can be calibrated in such a way that gas flux rates of bubble-size spectra, as observed at natural seeps, can be directly related to the echo level of a known, acoustically insonified volume. No system-specific parameters have to be known except the beam width.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-30
    Description: Methane seepage leads to Mg-calcite and aragonite precipitation at a depth of 4,850 m on the Aleutian accretionary margin. Stromatolitic and oncoid growth structures imply encrustation of microorganisms (microbial mats) in the host sediment with a unique growth direction downward into the sediment, forming crust-shaped lithologies. Biomarker investigations of the residue after carbonate dissolution show strong enrichments in crocetane and archaeol, which contain extremely low δ13C values. This indicates the presence of methane-consuming archaea, and δ13C values of –42 to –51‰ PDB indicate that methane is the carbon source for the carbonate crusts. Thus, it appears that stromatolitic encrustations of methanotrophic anaerobic archaea probably occurs in a consortium with sulphate-reducing bacteria and that carbonate precipitation proceeds downward into the sediment, where ascending cold fluids provide a methane source. Strontium and oxygen isotope analyses as well as 14C ages of the carbonates suggest that the fluids come from deep within the sediment and that carbonate precipitation began about 3,000 years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-10
    Description: By comparison of the methane mixing ratio and the carbon isotope ratio (δ13CCH4) in Arctic air with regional background, the incremental input of CH4 in an air parcel and the source δ13CCH4 signature can be determined. Using this technique the bulk Arctic CH4 source signature of air arriving at Spitsbergen in late summer 2008 and 2009 was found to be −68‰, indicative of the dominance of a biogenic CH4 source. This is close to the source signature of CH4 emissions from boreal wetlands. In spring, when wetland was frozen, the CH4 source signature was more enriched in 13C at −53 ± 6‰ with air mass back trajectories indicating a large influence from gas field emissions in the Ob River region. Emissions of CH4 to the water column from the seabed on the Spitsbergen continental slope are occurring but none has yet been detected reaching the atmosphere. The measurements illustrate the significance of wetland emissions. Potentially, these may respond quickly and powerfully to meteorological variations and to sustained climate warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 14 (7). pp. 2460-2473.
    Publication Date: 2018-02-28
    Description: Large internal wave breaking is observed exceeding a vertical array of 61 high-resolution temperature sensors at 1 m intervals between 7 and 67 m above the bottom. The array was moored for 5 days at 969 m of Opouawe Bank, New Zealand, a known methane seep area. As breaking internal waves dominate sediment resuspension above sloping topography in other ocean areas, they are expected to also influence methane transport. Despite being visible in single beam echosounder data, indications for turbulence due to rising gas bubbles are not found in the present 1 Hz sampled temperature records. Likely, the mooring was too far away from the very localized bubble release spot. Instead, the temperature sensors show detailed internal wave-turbulence transitions. Every tidal cycle, a solibore (a frontal turbulent bore with a train of trailing solitary waves) changes shape and intensity. These solibores are highly turbulent and they restratify the bottom boundary layer, thereby maintaining efficient mixing. Details of different turbulent bore developments are discussed. Averaged over a few tidal cycles and over the sensors range, mean vertical eddy diffusivity amounts to 3 ± 1 × 10−3 m2 s−1 and mean turbulent kinetic energy dissipation to 1.6 ± 0.7 × 10−7 W kg−1, with variations over 4 orders of magnitude. Such turbulence will affect the distribution of dissolved methane and other geochemical species in the lower 100–150 m above the bottom and their release from the bottom. The above mean values are remarkably similar to those found at various other sites in the NE Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 15 (5). pp. 1945-1959.
    Publication Date: 2017-09-15
    Description: We use new gas-hydrate geochemistry analyses, echosounder data, and three-dimensional P-Cable seismic data to study a gas-hydrate and free-gas system in 1200 m water depth at the Vestnesa Ridge offshore NW Svalbard. Geochemical measurements of gas from hydrates collected at the ridge revealed a thermogenic source. The presence of thermogenic gas and temperatures of similar to 3.3 degrees C result in a shallow top of the hydrate stability zone (THSZ) at similar to 340 m below sea level (mbsl). Therefore, hydrate-skinned gas bubbles, which inhibit gas-dissolution processes, are thermodynamically stable to this shallow water depth. This was confirmed by hydroacoustic observations of flares in 2010 and 2012 reaching water depths between 210 and 480 mbsl. At the seafloor, bubbles are released from acoustically transparent zones in the seismic data, which we interpret as regions where free gas is migrating through the hydrate stability zone (HSZ). These intrusions result in vertical variations in the base of the HSZ (BHSZ) of up to similar to 150 m, possibly making the shallow hydrate reservoir more susceptible to warming. Such Arctic gas-hydrate and free-gas systems are important because of their potential role in climate change and in fueling marine life, but remain largely understudied due to limited data coverage in seasonally ice-covered Arctic environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...