GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Earth-Science Reviews, ELSEVIER SCIENCE BV, 192, pp. 631-649, ISSN: 0012-8252
    Publication Date: 2019-05-03
    Description: Interactions between dissolved trace elements and organic ligands in seawater play an important role in ocean biogeochemistry, ranging from regulating primary production in surface waters to element cycling on basin-wide scale, with strong feedbacks to climate variability. In this study, we review different aspects in the field of marine trace elements and their organic ligands: recent instrumental innovation, factors that affect the fate of trace element complexes at the molecular level, spatial distribution of organic matter – trace element complexes in the ocean, modeling approaches as well as prospect in the scenarios of climate variability. We also assess the critical issues of parameterization in the numerical simulation that incorporate the trace elements – organic ligands interactions. Given the predicted climate changes, we examine the potential of exchange between inorganic and organic complexes for trace elements in different oceanic provinces.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Marine Chemistry, ELSEVIER SCIENCE BV, 215, pp. 103669, ISSN: 0304-4203
    Publication Date: 2021-01-01
    Description: The widespread diatom Pseudo-nitzschia can produce domoic acid (DA). DA is a compound with well described neurotoxic effects on vertebrates including humans known as amnesic shellfish poisoning (ASP) syndrome. It has also been suggested to serve as an organic ligand that binds to iron and copper. By binding these trace elements, DA may increase their solubility and bioavailability. In order to serve this function, DA has to be excreted and reabsorbed by the cells. Only few records of dissolved domoic acid (dDA) concentrations in the ocean exist. To accomplish quantification by ultra performance liquid chromatography (UPLC), samples have to be pre-concentrated and desalted using solid-phase extraction, a procedure commonly applied for dissolved organic matter. Our major goals were to quantify dDA in a basin-wide assessment in the East Atlantic Ocean, to determine extraction efficiencies for complexed and uncomplexed dDA, and to assess whether domoic acid is represented by its molecular formula in direct-infusion high resolution mass spectrometry. Our results showed that dDA was extracted almost quantitatively and occurred ubiquitously in the ocean surface but also in deeper (and older) water, indicating surprisingly high stability in seawater. The maximum concentration measured was 173 pmol L−1 and the average molar dDA carbon yield was 7.7 ppm. Both carbon yield and dDA concentration decreased with increasing water depth. Providing quantification of dDA in the water column, we seek to improve our understanding of toxic bloom dynamics and the mechanistic understanding of DA production.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Marine Systems, ELSEVIER SCIENCE BV, 163, pp. 95-101, ISSN: 0924-7963
    Publication Date: 2017-01-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-24
    Description: The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: A method is presented for the chemical characterization of natural organic matter (NOM). We combined reversed-phase chromatographic separation of NOM with high resolution inductively coupled plasma mass spectrometry. A desolvation technique was used to remove organic solvent derived from the preceding chromatographic separation. We applied our method to solid-phase extracted marine dissolved organic matter samples from South Atlantic and Antarctic surface waters. The method provided a direct and quantitative determination of dissolved organic phosphorus and sulfur in fractions of differing polarity and also allowed simultaneous speciation studies of trace elements. Dissolved organic carbon/phosphorus and carbon/sulfur ratios for the different chromatographic fractions of our two samples ranged between 341–3025 for C/P and 11–1225 for C/S. Differences in elemental distribution between the fractions were attributed to different biochemical environments of the samples. Sulfur was exclusively found in one hydrophilic fraction, while uranium showed a strong affinity to the hydrophobic fractions. Our method was designed to be easily adapted to other separation techniques. The elemental information will deliver valuable information for ultrahigh resolution molecular analyses.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The overlay of cooler nutrient enriched Beagle–Magellan water with warmer nutrient depleted shelf water and a strong stratification of the water column in the San Jorge Gulf region, Argentina, coincided with relatively high dinoflagellate abundances in April 2012, up to 34,000 cells L− 1. This dinoflagellate proliferation was dominated by Ceratium spp., but environmental conditions also favored to a lesser amount the occurrence of toxigenic dinoflagellates, such as Alexandrium tamarense and Protoceratium reticulatum, whose toxins were hardly detected in any other areas along the expedition transect of the R/V Puerto Deseado between 38 and 56°S (Ushuaia–Mar del Plata) in March/April 2012. Generally vegetative cells of A. tamarense and P. reticulatum co-occurred with their respective phycotoxins in the water column and their cysts in the upper sediment layers. Two strains of A. tamarense were isolated from the bloom sample and morphologically characterized. Their PSP toxin profiles consisted of C1/2, gonyautoxins 1/4 and to a lesser amount of neosaxitoxin and confirmed earlier data from this region. The ratios between autotrophic picoplankton and heterotrophic bacteria were higher in shelf waters in the north than in Beagle–Magellan waters in the south of San Jorge Gulf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-17
    Description: Fluorescence spectroscopy is commonly used to investigate the distribution and dynamics of dissolved organic matter (DOM) in marine systems. However, the direct comparison with chemical signatures is essential to substantiate the molecular composition of specific fluorescent components. Here we report the relation between optical and chemical signatures of DOM in waters of the Beagle Channel (BCW) (south-east of Tierra del Fuego, in the southern Argentine shelf) at the Pacific-Atlantic connection and neighboring coastal (CW) and oceanic (OW) waters (54.75–55.75°S, 64–68°W). The relationships among concentrations of total dissolved carbohydrates (TDCHO) and amino acids (TDAA), and fluorescent DOM (FDOM), including terrestrial “humic-like” (FDOMC) and “protein-like” compounds (FDOMT), and bioavailability of DOM components were assessed from field measurements acquired in the austral summer 2012. The maximal concentrations of TDCHO, dissolved organic carbon (DOC) and FDOMc intensities were found in BCW, while the minima in OW, displaying a negative correlation with salinity. This spatial distribution of biogeochemical signals suggests that humic compounds contributed by continental runoff contain refractory carbohydrates, and FDOMC resulted as a reliable tracer of carbon pathways in the Pacific-Atlantic connection. Conversely, TDAA and FDOMT showed the opposite distributional trend, with minimal concentrations in BCW and the maxima in CW and OW. The significant positive correlation of TDAA with salinity suggests open water sources of these components, however, phytoplankton biomass (Chla) in CW and OW was significantly lower than in BCW, ruling out the assumption of autochthonous source in open waters. TDAA were negatively correlated with the abundance of heterotrophic bacteria (HB), which displayed a consistent decrease from BCW towards OW, suggesting high bacterial uptake of TDAA in the BCW. This bacterial uptake is supported by the observed variation in carbon contribution of TDAA to DOC (amino acids carbon yield, in %), which is an indicator of DOM lability. The negative correlation found between amino acids carbon yield and HB abundance reflects intense bacterial activity in BCW, where phytoplankton biomass was maximum. Hence, higher DOM “freshness” occurs in the BCW, suggesting a tight coupling between microbial production and consumption.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-01
    Description: Continuing losses of multi-year sea ice (MYI) across the Arctic are causing first-year sea ice (FYI) to dominate the Arctic ice pack. Melting FYI provides a strong seasonal pulse of dissolved organic matter (DOM) into surface waters; however, the biological impact of this DOM input is unknown. Here we show that DOM additions cause important and contrasting changes in under-ice bacterioplankton abundance, production and species composition. Utilization of DOM was influenced by molecular size, with 10–100 kDa and 〉100 kDa DOM fractions promoting rapid growth of particular taxa, while uptake of sulfur and nitrogen-rich low molecular weight organic compounds shifted bacterial community composition. These results demonstrate the ecological impacts of DOM released from melting FYI, with wide-ranging consequences for the cycling of organic matter across regions of the Arctic Ocean transitioning from multi-year to seasonal sea ice as the climate continues to warm.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Marine Chemistry, ELSEVIER SCIENCE BV, 207, pp. 33-41, ISSN: 0304-4203
    Publication Date: 2018-11-23
    Description: Advancing our understanding of the behaviour of dissolved organic matter (DOM) in aquatic environments necessitates efforts to combine complementary analytical data sets. However, some analytical measurements require sample pre-treatment, while others are carried out on bulk water samples, and it remains unclear if the resulting data sets can be compared. Here, we investigated the impact of solid-phase extraction with PPL resins on DOM optical properties. In samples from contrasting Arctic fjords, extraction efficiencies based on optical properties varied spectrally with averages between 31 ± 13% at 411 nm and 40 ± 12% at 363 nm for chromophoric DOM. Similarly, the extraction efficiency for specific fluorescence components varied between 37 ± 16% and 58 ± 18%. Solid-phase extraction also decreased S275–295, fluorescence index, and the freshness index, but increased S350–400, and apparent fluorescence quantum yields, indicating that the extraction process was qualitatively selective. Six fluorescence components identified independently in bulk water samples and extracted DOM using parallel factor analysis exhibited different behaviours. Three had identical spectral properties before and after extraction, although their extraction efficiencies varied with water mass characteristics and DOM composition, whereas three other components appeared to change after extraction. With the exception of one fluorescence component, the dynamics of optical properties in bulk water samples were not accurately reflected by DOM extracts. These results indicate that solid-phase extraction imparts a qualitative selectivity that leads to the homogenization of DOM extracts relative to their original samples. Efforts to integrate chemical information from different analytical methods should prioritize comparisons of measurements obtained on the same samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...