GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-14
    Description: Zooplankton grazing onphytoplankton promotes the release of particulate and dissolved organic matter (DOM) into the water column and therefore plays a key role in organic matter cycling in aquatic systems. Prokaryotes are the main DOM consumers in the ocean by actively remineralizing and transforming it, contributing to its molecular diversification. To explore the molecular composition of zooplankton‐derived DOM and its bioavailability to natural prokaryotic communities, the DOM generated by a mixed zooplankton community in the coastal Atlantic off Spain was used as substrate for a natural prokaryotic community and monitored over a ~ 5‐d incubation experiment. The molecular composition of solid‐phase extracted DOM was characterized via Fourier‐transform ion cyclotron resonance mass spectrometry. After ~ 4 d in the zooplankton‐derived DOM amended incubation, the prokaryotic community demonstrated a 17‐fold exponential increase in cell number. The prokaryotic growth resulted in a reduction in bulk dissolved organic carbon concentration and the zooplankton‐derived DOM was considerably transformed at molecular and bulk elemental levels over the incubation period. The C : N ratio (calculated from the obtained molecular formulae) increased while the functional diversity decreased over the incubation time. In addition, molecular indices pointed to a reduced bioavailability of DOM at the end of the experiment. These findings show that zooplankton excreta are a source of labile organic matter that is quickly metabolized by the prokaryotic community. Therefore, a fraction of carbon is shunted from transfer to secondary consumers similarly to the viral shunt, suggesting that the zooplankton–prokaryotic interactions play an important role in the ocean's carbon cycle.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Xunta de Galicia http://dx.doi.org/10.13039/501100010801
    Keywords: ddc:577.7 ; Spain ; coastal Atlantic ; zooplankton–prokaryotic interactions ; ocean’s carbon cycle
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-01
    Description: Bacteria play a key role in sustaining the chemodiversity of marine dissolved organic matter (DOM), yet there is limited direct evidence of a major contribution of bacterial exometabolites to the DOM pool. This study tests whether molecular formulae of intact exometabolites can be detected in natural DOM via untargeted Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). We analyzed a series of quantitative mixtures of solid‐phase extracted DOM from the deep ocean, of a natural microbial community and selected model strains of marine bacteria. Under standard instrument settings (200 broadband scans, mass range 92–1000 Da), 77% of molecular formulae were shared between the mesocosm and marine DOM. However, there was 〈 10% overlap between pure bacterial exometabolome with marine DOM, and in mixing ratios closest to mimicking natural environments (1% bacterial DOM, 99% marine DOM), only 4% of the unique bacterial exometabolites remained detectable. Further experiments with the bacterial exometabolome DOM mixtures using enhanced instrument settings resulted in increased detection of the exometabolites at low concentrations. At 1000 and 10,000 accumulated scans, 23% and 29% of the unique molecular formulae were detectable at low concentrations, respectively. Moreover, windowing a specific mass range encompassing a representative fraction of exometabolites tripled the number of unique detected formulae at low concentrations. Routine FT‐ICR‐MS settings are thus not always sufficient to distinguish bacterial exometabolome patterns from a seawater DOM background. To observe these patterns at higher sensitivity, we recommend a high scan number coupled with windowing a characteristic region of the molecular fingerprint.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.46 ; ddc:579.3 ; ddc:
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-27
    Description: Dissolved organic matter (DOM) is the largest organic carbon reservoir in the ocean and an integral component of biogeochemical cycles. The role of free‐living microbes in DOM transformation has been studied thoroughly, whereas little attention has been directed towards the influence of benthic organisms. Sponges are efficient filter feeders and common inhabitants of many benthic communities circumglobally. Here, we investigated how two tropical coral reef sponges shape marine DOM. We compared bacterial abundance, inorganic and organic nutrients in off reef, sponge inhalant, and sponge exhalant water of Melophlus sarasinorum and Rhabdastrella globostellata. DOM and bacterial cells were taken up, and dissolved inorganic nitrogen was released by the two Indo‐Pacific sponges. Both sponge species utilized a common set of 142 of a total of 3040 compounds detected in DOM on a molecular formula level via ultrahigh‐resolution mass spectrometry. In addition, species‐specific uptake was observed, likely due to differences in their associated microbial communities. Overall, the sponges removed presumably semi‐labile and semi‐refractory compounds from the water column, thereby competing with pelagic bacteria. Within minutes, sponge holobionts altered the molecular composition of surface water DOM (inhalant) into a composition similar to deep‐sea DOM (exhalent). The apparent radiocarbon age of DOM increased consistently from off reef and inhalant to exhalant by about 900 14C years for M. sarasinorum. In the pelagic, similar transformations require decades to centuries. Our results stress the dependence of DOM lability definition on the respective environment and illustrate that sponges are hotspots of DOM transformation in the ocean.
    Description: Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg
    Description: Ministry for Science and Culture of Lower Saxony http://dx.doi.org/10.13039/501100010570
    Description: Carl‐von‐Ossietzky University Oldenburg
    Description: Alfred‐Wegener‐Institute, Helmholtz‐Center for Polar and Marine Research
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Description: https://doi.org/10.5061/dryad.m0cfxpp6v
    Keywords: ddc:577.7 ; Indo-Pacific sponges ; dissolved organic matter ; biogeochemical cycles
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-13
    Description: Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a “business-as-usual” emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m3 each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, PERGAMON-ELSEVIER SCIENCE LTD, 230, ISSN: 1386-1425
    Publication Date: 2020-09-21
    Description: Dissolved organic matter (DOM) is an omnipresent constituent of natural water bodies. Reuse and transformation of DOM compounds in the water column is driven by physicochemical and biological processes leading to the production of refractory DOM. Typically, breakdown of DOM chemical compounds into smaller or more condensed fragments is triggered by ultraviolet (UV) radiation. Here, we present a study on the photodegradation of DOM produced during an incubation experiment with a natural microbial community. At the end of the first incubation without UV irradiation, the samples from 3 mesocosms were filtered to remove microbes and particles and continuously exposed to UV radiation (280–365 nm). We investigated DOM in depth via monitoring of dissolved organic carbon (DOC) concentrations, DOM molecular characterization by Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and excitation emission matrix spectroscopy (EEMS). Analysis of variance indicated no significant differences in the DOC concentration between treatments. Main peaks in the fluorescent DOM (FDOM) were photo-bleached by UV radiation, and an increase in the fluorescent intensity of selected peaks was observed on irradiated samples toward the end of the experiment. Parallel factor analysis (PARAFAC) indicated the presence of three main components in all treatments: C1 (Marine humic M), C2 (Bacterial produced humic C), C3 (Tyrosine), and an additional component in the dark incubation of mesocosm 3, C4 (Tryptophan). Despite an intensive filtration protocol through 0.7, 0.2 and 0.1 μm filters, low bacterial abundances were determined (〈2.5 × 10−3 cells mL−1). We observed a direct correlation between structural indices and the intensity of PARAFAC components. Average double bond equivalent and aromaticity were strongly positively correlated with PARAFAC components C1 and C2 for one or more mesocosm. Moreover, FT-ICR-MS showed that under the tested conditions, the refractory character of the DOM assessed as the similarity to a deep ocean DOM reference did not increase on molecular level. Thus, mechanisms other than photochemical transformations of relatively recent DOM are likely necessary to facilitate long-term stability of DOM in the oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Organic Geochemistry, PERGAMON-ELSEVIER SCIENCE LTD, 97, pp. 41-52, ISSN: 0146-6380
    Publication Date: 2017-02-01
    Description: Marine organic matter (OM) sink sfrom surface water to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as an energy and carbon source, produce dissolved OM (DOM) in the process of degradation, enriching the sediment pore water with fresh DOM compounds. In the oligotrophic deep Arctic basin, particle flux is low but highly seasonal. We hypothesized that the molecular signal of freshly deposited, primary produced OM would be detectable in surface sediment pore water which should differ in DOM composition from bottom water and deeper sediment pore water. The study focused on (i) the molecular composition of the DOM in sediment pore water of the deep Eurasian Arctic basins, (ii) the signal of marine vs. terrigenous DOM represented by different compounds preserved in the pore water and (iii) the relationship between Arctic Ocean ice cover and DOM composition. Composition based on mass spectrometric information, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were correlated with environmental parameters with partial least square analysis. The fresh marine detrital OM signal from surface water was limited to pore water from 〈 5 cm sediment depth. The productive ice margin stations showed a higher abundance of peptide, unsaturated aliphatic and saturated fatty acid molecular formulae, indicative of recent phytodetritus deposition, than the multiyear ice-covered stations, which had a stronger aromatic signal. The study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and how it may be altered in response to sea ice retreat and increasing river runoff.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Geochimica et Cosmochimica Acta, PERGAMON-ELSEVIER SCIENCE LTD, 259, pp. 211-232, ISSN: 0016-7037
    Publication Date: 2020-10-07
    Description: Subterranean estuaries (STEs) are land-ocean interfaces where meteoric fresh groundwater mixes with intruding seawater in a coastal aquifer, before discharging into the adjacent water column. In contrast to surface estuaries, STEs have the potential to amplify concentrations of constituents such as copper (Cu) and iron (Fe) due to long residence times and reductive dissolution of mineral phases along the groundwater flowpaths. However, oxidative precipitation of Fe and Mn at the sediment-water interface may scavenge many constituents again before they reach the coastal water column. Hence, the geochemical impact of the suboxic to anoxic submarine groundwater discharge (SGD) on the oxygenated coastal ocean relies on the capability of constituents such as Cu and Fe to stay in solution across redox boundaries. Here, we propose that dissolved organic matter (DOM) in the STE plays a pivotal role in the speciation of Cu and Fe through (i) fueling reductive dissolution and (ii) providing ligands to form stable metal-DOM complexes, increasing their transfer from the STE into the coastal ocean. We investigated the concentrations and speciation of Cu and Fe, and DOM chemical characteristics, in two beach STEs of a barrier island. By combining well-established techniques with novel quantification and speciation approaches from both the inorganic and organic geochemical realm (size-fractionation filtration, ferrozine detection, voltammetry, sequential DOM extraction, and ultra-high resolution mass spectrometry) we characterized metal-DOM associations down to the molecular level. Overall, pore water from both STEs was enriched with Cu and Fe compared to seawater, which indicated transfer potential for both trace metals across the sediment-water interface. However, Fe gradients from pore water to surface were steeper than those for Cu, indicating a larger net transfer of the latter compared to the former. Our voltammetry data showed that Cu was exclusively organically bound in both STEs and the water column, mostly in soluble form (〈20 nm). The majority of 〉60 newly identified Cu-containing complexes had primarily aliphatic character and N and S in their molecular formulae resembling labile marine DOM, while two Cu-DOM complexes had polyphenol (“humic-like”) molecular formulae indicative of terrestrial vascular plant-derived material. In contrast to Cu, the Fe pool consisted of either reduced, soluble (〈20 nm), likely free Fe(II) in the anoxic STE, or of larger colloids (〈200 nm and 〉20 nm) in the fresh groundwater and seawater endmembers, likely as Fe(III)(hydr)oxides stabilized by DOM. Furthermore, while Fe and humic-like DOM seemed to share common sources, all directly identified mobile Fe-DOM complexes appeared to have marine origins. Therefore, organic forms of Fe in the STE may primarily consist of immobile humic-Fe coagulates, partially mobile Fe-nanocolloids, and mobile, N-containing, marine aliphatic Fe-complexes. Our study indicates that aliphatic, N-containing ligands may play an important role in the organic complexation and stabilization of Fe and particularly Cu in the STE, and enable them to cross redox boundaries at the sediment-water interface.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...