GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 164 (1994), S. 155-167 
    ISSN: 1573-5036
    Keywords: axile roots ; maize ; nodal roots ; root length ; root system ; seminal roots ; Zea mays L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded. Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed. Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 164 (1994), S. 169-176 
    ISSN: 1573-5036
    Keywords: branching ; growth ; lateral roots ; maize ; root morphology ; Zea mays L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The architecture of the root system is related to its water and mineral uptake. In this paper, the number, growth, and branching of first-order lateral roots are studied on field grown maize (early maturing cultivar ‘Dea’), mainly in relation to the depth and to the rank of the bearing phytomer. The soil was a deep clay loam, without any barrier until 1.80 m. The branching density was studied along axile roots until 1.40 m from the base, on a sample of individually excavated axile roots. A strong gradient of density was shown: the mean branching density decreased from 12 roots.cm−1 near the base to 4 roots.cm−1 at a 60 cm depth. Seminal roots were less densely branched than nodal roots. The mean difference was about 4 roots.cm−1. The length and branching density of lateral roots were studied on mature parts of the root systems where the growth and branching of the laterals were completed, using samples extracted from large soil monoliths. The length distribution of lateral roots was highly asymmetrical, for every source phytomer (mean: 25 mm; median: 16 mm). Many lateral roots were very short, and only 2 % reached a length higher than 10 cm. Only 29 % of all the laterals bore second-order lateral roots. Vigorous laterals branched more systematically and more profusely: the branching density varied from 2 to 5 roots.cm−1 according to the length of the mother lateral root. Both the number and length of lateral roots appeared to be affected by the soil bulk density which varied with the depth.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: maize ; ABA-induced gene ; protein phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ABA-induced MA12 cDNA from maize, which encodes a set of highly phosphorylated embryo proteins, was used to isolate the corresponding genomic clone. This gene, called RAB-17 (responsive to ABA), encodes a basic, glycine-rich protein (mol. wt. 17 164) containing a cluster of 8 serine residues, seven of them contiguous. It is a homologue of the rice RAB-21 gene (Mundy J, Chua NH, EMBO J 7; 2279–2286, 1988). Phosphoamino acid analysis of the isolated protein indicates that only the serine residues are phosphorylated and a putative casein-type kinase phosphorylatable sequence was identified in the protein. The pattern of expression and in vivo phosphorylation of the RAB-17 protein was studied during maize embryo germination and in calli of both meristematic or embryonic origin. ABA treatment induced the synthesis of RAB-17 mRNA and protein in calli, however, the RAB-17 proteins were found to be highly phosphorylated only in embryos.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: ABA-responsive element ; maize ; tissue-specific factors ; rab genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...