GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (10)
  • 1
    facet.materialart.
    Unknown
    Alfred-Wegener-Institute
    In:  Berichte zur Polarforschung, 259 . Alfred-Wegener-Institute, Bremerhaven, Germany, pp. 6-20, 39 pp.
    Publication Date: 2020-04-20
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 25 (11). pp. 2532-2546.
    Publication Date: 2018-04-05
    Description: In late austral summer 1991 a cyclonic thermocline eddy was detected in the subtropical western South Atlantic off the Brazilian shelf near the city of Vitória. This Vitória eddy was tracked for 55 days by surface drifters drogued at 100-m depth. The drifters had been deployed in the western boundary current regime by FS Meteor as part of a basinwide surface current study. The analysis of a combined CTD/XBT section across the Vitória eddy, together with drifter data and satellite images of the thermal surface structure revealed the unexpected complexity of the region. The eddy interacted not only with the local topography and the Brazil Current, located farther offshore, but also with an extended upwelling regime north of Cabo Frio. The hydrographic and kinematic properties and anomalies of the Vitóia eddy are analyzed and compared with similar vortices described elsewhere in literature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 105 pp
    Publication Date: 2018-09-14
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  International WOCE Newsletter, 28 . pp. 30-33.
    Publication Date: 2017-07-03
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  International WOCE Newsletter, 30 . pp. 39-43.
    Publication Date: 2017-07-03
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  International WOCE Newsletter, 18 . pp. 26-28.
    Publication Date: 2018-06-15
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 46 . pp. 355-392.
    Publication Date: 2020-08-05
    Description: The northward flowing Antarctic Intermediate Water (AAIW) is a major contributor to the large-scale meridional circulation of water masses in the Atlantic. Together with bottom and thermocline water, AAIW replaces North Atlantic Deep Water that penetrates into the South Atlantic from the North. On the northbound propagation of AAIW from its formation area in the south-western region of the Argentine Basin, the AAIW progresses through a complex spreading pattern at the base of the main thermocline. This paper presents trajectories of 75 subsurface floats, seeded at AAIW depth. The floats were acoustically tracked, covering a period from December 1992 to October 1996, Discussions of selected trajectories focus on mesoscale kinematic elements that contribute to the spreading of AAIW. In the equatorial region, intermittent westward and eastward currents were observed, suggesting a seasonal cycle of the AAIW flow direction. At tropical latitudes, just offshore the intermediate western boundary current, the southward advection of an anticyclonic eddy was observed between 5 degrees S and 11 degrees S. Farther offshore, the flow lacks an advective pattern and is governed by eddy diffusion. The westward subtropical gyre return current at about 28 degrees S shows considerable stability, with the mean kinetic energy to eddy kinetic energy ratio being around one. Farther south, the eastward deeper South Atlantic Current is dominated by large-scale meanders with particle velocities in excess of 60 cm s(-1). At the Brazil-Falkland Current Confluence Zone, a cyclonic eddy near 40 degrees S 50 degrees W seems to act as injector of freshly mixed AAIW into the subtropical gyre. In general, much of the mixing of the various blends of AAIW is due to the activity of mesoscale eddies, which frequently reoccupy similar positions. (C) 1999 Elsevier Science Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 26 . 21,3329-21,3332.
    Publication Date: 2018-02-13
    Description: The subsurface oceanic circulation is an important part of the Earth climate system. Subsurface currents traditionally are inferred indirectly from distributions of temperature and dissolved substances, occasionally supplemented by current meter measurements. Neutrally-buoyant floats however, now enable us to obtain for the first time directly measured intermediate depth velocity fields over large areas such as the western South Atlantic. Here, our combined data set provides unprecedented observations and quantification of key flow patterns, such as the Subtropical Gyre return flow (12 Sv; 1 Sverdrup = 10(6)m(3)s(-1)), its bifurcation near the Santos Plateau and the resulting continuous narrow and swift northward intermediate western boundary current (4 Sv). This northward flowing water passes through complex equatorial flows and finally enters into the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 104 (C9). 21,063-21,082.
    Publication Date: 2018-04-27
    Description: The subsurface flow within the subantarctic and subtropical regions around the Brazil-Malvinas (Falkland) Confluence Zone is studied, using daily hydrographic and kinematic data from four subsurface floats and a hydrographic section parallel to the South American shelf. The float trajectories are mapped against sea surface flow patterns as visible in concurrent satellite sea surface temperature (SST) images, with focus on the November 1994 and October/November 1995 periods. The unprecedented employment of Lagrangian θ-S diagrams enables us to trace the advection of patches of fresh Antarctic Intermediate Water (AAIW) from the Confluence Zone into the subtropical region. The fresh AAIW consists of a mixture of subtropical AAIW and Malvinas Current core water. Within the subtropical gyre, these patches are discernible for extended periods and drift over long distances, reaching north to 34°S and east to 40°W. The cross-frontal migration of quasi-isobaric floats across the Confluence Zone from the subtropical to the subantarctic environment is observed on three occasions. The reverse process, float migration from a subpolar to a subtropical environment was observed once. These events were located near 40°S, 50°W, the site of a reoccurring cold core feature. Subsurface float and SST data comparison reveals similarities with analogous observations made in the Gulf Stream [Rossby, 1996] where cross-frontal processes were observed close to meander crests. The limited number of floats of this study and the complex structure of the Brazil-Malvinas Confluence Zone, however, restricts the analysis to a description of two events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-07
    Description: The flow of the low‐salinity Antarctic Intermediate Water (AAIW) at 700–1150 m depth across the Rio Grande Rise and the lower Santos Plateau is studied under the auspices of the World Ocean Circulation Experiment (WOCE) in the context of the Deep Basin Experiment. Our data set consists of several hydrographic sections, a collection of 15 RAFOS float trajectories, and records from 14 moored current meters. The data were gathered during different intervals between 1990 and 1994. The inferred flow field strongly supports a basinwide anticyclonic recirculation cell in the subtropical South Atlantic underneath the wind‐driven gyre. Its center, which appears to be southeast of the Rio Grande Rise, separates the eastward advection of AAIW below the South Atlantic Current from the westward flowing, recirculating AAIW. The two near‐shelf limbs closing the circumference of AAIW flow are formed in the east by the deep Benguela Current, potentially modulated by salty inflow of Indian Ocean Intermediate Water, and in the west by the Brazil Current system. Further important circulation elements are the Brazil‐Falkland (Malvinas) Confluence Zone at 40°S and an unnamed divergence at 28°S close to the 1000 m isobath. The resulting broad southward flow of AAIW augments the share of modified, i.e., saltier, intermediate water in the source region of the South Atlantic Current, while the smaller northward flow marks the source of a narrow equatorward Western Intermediate Boundary Current, ultimately leaving the South Atlantic. This shelf‐trapped jet is clearly documented in hydrographic data from 19°S and in nearby current meter records. The jet contrasts a sluggish flow across this latitude east of 35°W. A continuous flow of AAIW from its subpolar region in the southwestern Argentine Basin all along the western slope toward the equator appears unlikely between 35°S and 25°S.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...