GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (10)
  • 1
    Book
    Book
    Kiel : Sonderforschungsbereich 313
    Keywords: Report ; Forschungsbericht ; Hochschulschrift
    Type of Medium: Book
    Pages: VIII, 239 S , Ill., graph. Darst., Kt
    Series Statement: Berichte aus dem Sonderforschungsbereich 313 72
    Language: German
    Note: Zugl.: Kiel, Univ., Diss., 1997
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers. In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term studies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 241 pp . Berichte aus dem Sonderforschungsbereich 313, Veränderungen der Umwelt - Der Nördliche Nordatlantik, 72 .
    Publication Date: 2019-02-08
    Type: Thesis , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 44 (1/2). pp. 261-282.
    Publication Date: 2020-08-05
    Description: The development of phytoplankton biomass and composition was investigated on three occasions along a longitudinal transect (6°W) between 60°S and 47°S from October 13 to November 21, 1992 by measurement of photosynthetic pigments with high performance liquid chromatography (HPLC). Measured accessory pigment concentrations were multiplied by conversion factors to derive the proportions of phytoplankton groups contributing to the biomass indicator chlorophyll a. Phytoplankton blooms developed in the Polar Frontal region (PFr) and were dominated (80%) by diatoms. Other groups contributing to the phytoplankton included prymnesiophytes, green algae, autotrophic dinoflagellates, cryptophytes, pelagophytes and micromonadophytes, and their distributions varied with time. In contrast, phytoplankton biomass remained low in the southern Antarctic Circumpolar Current (ACC) and was dominated by flagellates, particularly green algae and prymnesiophytes. Green algae contributed more to total biomass than in previous investigations, partly attributed to “Chlorella-like” type organisms rather than prasinophytes. Cryptophytes decreased during the investigation, possibly due to salp grazing. No bloom was observed at the retreating ice-edge, presumably due to strong wind mixing. Only a slight increase in phytoplankton biomass, composed primarily of diatoms, was found at the ACC-Weddell Gyre front. Cluster analysis revealed that different phytoplankton communities characterised the different water masses of the PFr and southern ACC; the history of different water masses in the PFr could be reconstructed on this basis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-30
    Description: Findings from experiments showed that the web-feeding euthecosomatous pteropod, Limacina retroversa, can produce rapidly sinking, mucous aggregates. It is suggested that, by adhesion, these aggregates scavenged picoplankton-sized particles, which were thus effectively cleared from the medium. In contrast, Calanus finmarchicusw as not able to clear these particles in our experiments. Sedimentation velocities of 10 aggregates measured in vivo were up to 1000 m day1, with an average of —300 m day-1 (not including two aggegates with neutral buoyancy). Mean velocities measured for feces of C.finmarchicus, Calanus hyperboreus and Thysanoessa sp. were considerably lower. We suggest that the sedimentation of L.retroversa aggregates was the source of mucous floes collected in sediment traps (Bathmann et al., Deep-Sea Res., 38,1341-1360,1991) and at the sea floor at 1200 m depth in the southern Norwegian Sea. This process may be an important mediator of sedimentation to the deep sea, when these pteropods are present in surface waters in large abundance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep-Sea Research Part II-Topical Studies in Oceanography, 44 (1/2). pp. 69-90.
    Publication Date: 2016-10-10
    Description: High biogenic silica (BSi) concentrations (maximum: 11.7μmoll−1) were recorded during late November at the southern border of the Polar Frontal region (PFr). Position of the BSi maximum at depth suggested the occurrence of a sinking diatom population. By contrast, siliceous biomass was low (BSi 〈0.6 μmol l−1) in the Marginal Ice Zone (MIZ) despite a sea-ice retreat of 200 km during the study period. Diatoms released from the receding ice were not actively growing. The Permanently Open Ocean Zone also showed very low BSi biomass (〈0.5μmol l−1) and appeared as an area where phytoplankton are not dominated by siliceous organisms, especially in its middle part where BSi/POC (particulate organic carbon) molar ratios ranged between 0.04 and 0.06 at 53°S, from surface to 200 m depth. At the southern border of the PFZ, the bloom coincided with an area of high lithogenic silica concentrations probably of aeolian origin. In addition, BSi/POC molar ratios measured in the PFZ were the highest ever recorded in the surface waters of the Southern Ocean (maximum: 1.75). This could be due to the presence of heavily silicified diatoms such as Fragilariopsis kerguelensis or also could reflect the more rapid recycling of POC as compared to BSi. Within the bloom area BSi concentrations were positively correlated to pyrophaeophytin pigments, possibly indicating the occurrence of a senescent diatom population. High concentrations of BSi (〉 1.5 μmol Si 1−1) extended to 200 m between 49°S and 51°S. Numerous empty frustules also were observed, suggesting significant sedimentation of siliceous particles between 49°S and 51°S. Estimates of the BSi production of the Polar Frontal region are derived from 14C primary production and appropriate BSi/POC ratios, and implications for the total annual production of BSi for the Southern Ocean are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep-Sea Research Part II-Topical Studies in Oceanography, 44 (1/2). pp. 23-50.
    Publication Date: 2016-10-10
    Description: Small-scale features of the Antarctic Circumpolar Current (ACC) along a meridional section at 6°W between the Polar Front and the ACC-Weddell Gyre Boundary Front are discussed using data collected during the austral spring cruise ANT X/6 of R. V. Polarstern organized within the framework of the European IGBP-JGOFS (Southern Ocean). The section covered three distinct fronts, namely the Polar Front, the Southern Polar Front (also Southern ACC Front), and the ACC-Weddell Gyre Boundary Front. Physical measurements during repeated transects over a period of 6 weeks in October/November revealed a large variability in the Polar Frontal region, indicating meandering and eddy shedding. The positions of the Southern Polar Front and the ACC-Weddell Gyre Boundary Front were observed to be far more stable than that of the Polar Front. A possible reconstruction of the meandering flow field near the Polar Front, based upon the physical observations, is presented. Details in the flow field coincide with the spatial distribution of a number of biological parameters such as phytoplankton biomass and species, and photosynthetic pigments. Although a causal relationship between them is likely, biomass enhancement cannot be understood simply in terms of macronutrients from deeper layers entering the euphotic zone, as substantiated for other oceanic frontal regions, because macronutrients do not limit phytoplankton blooms. This process, however, can be important for the micronutrient iron. Evidence is presented that the Antarctic Zone of the ACC can be subdivided into a number of spheres of influence related to the fronts. Interleaving of water is apparent between positions within such a region, but not between the regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...