GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Document type
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 14 (1997), S. 853-859 
    ISSN: 1573-904X
    Keywords: non-viral gene delivery ; plasmid ; cationic liposomes ; formulation ; transfection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Gene delivery systems are designed to control the location of administered therapeutic genes within a patient's body. Successful in vivo gene transfer may require (i) the condensation of plasmid and its protection from nuclease degradation, (ii) cellular interaction and internalization of condensed plasmid, (iii) escape of plasmid from endosomes (if endocytosis is involved), and (iv) plasmid entry into cell nuclei. Expression plasmids encoding a therapeutic protein can be, for instance, complexed with cationic liposomes or micelles in order to achieve effective in vivo gene transfer. A thorough knowledge of pharmaceutics and drug delivery, bio-engineering, as well as cell and molecular biology is required to design optimal systems for gene therapy. This mini-review provides a critical discussion on cationic lipid-based gene delivery systems and their possible uses as pharmaceuticals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: plasmid DNA ; liver perfusion ; pharmacokinetics ; gene therapy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To define the hepatic uptake mechanism of a plasmid DNA, we quantitated the uptake of pCAT (plasmid DNA encoding chloramphenicol acetyltransferase reporter gene fused to simian virus 40 promoter), a model plasmid, after a single pass through the perfused rat liver using albumin- and erythrocyte-free Krebs-Ringer bicarbonate buffer (pH 7.4). Methods. [32P]pCAT was introduced momentarily into this system from the portal vein as a bolus input or constant infusion mode, and the outflow patterns and hepatic uptake were evaluated using statistical moment analysis. Results. The venous outflow samples had electrophoretic bands similar to that of the standard pCAT, suggesting that the plasmid is fairly stable in the perfusate during liver perfusion. In bolus experiments, pCAT was largely taken up by the liver and the uptake was decreased with increase in injected dose. Statistical moment analysis against outflow patterns demonstrated that the apparent volume of distribution of pCAT was greater than that of human serum albumin, indicating a significant reversible interaction with the tissues. The results of collagenase perfusion experiments suggest that the hepatic accumulation of pCAT occurred preferentially in the nonparenchymal cells (NPC). The amount of total recovery in the liver decreased substantially by preceding administration of polyinosinic acid, dextran sulfate, succinylated bovine serum albumin, but not by polycytidylic acid. This suggests that pC AT is taken up by the liver via scavenger receptors for polyanions on the NPC. In constant infusion experiments, the presence of 2,4-dinitrophenol and NH4C1 caused a significant increase in the outflow concentration of [32P]pCAT and decrease by half in the total hepatic recovery than that of plasmid DNA administered alone, suggesting that plasmid DNA may undergo internalization by the NPC. Conclusions. The liver plays an important role in the elimination of plasmid DNA and a successful delivery system will be required to avoid its recognition by the scavenger receptors on the liver NPC.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...