GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Baltic Sea ; Coastal eutrophication ; Crustacean grazers germination ; Overwintering propagules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although blooms of opportunistic fast-growing macroalgae now occur frequently in coastal ecosystems affected by eutrophication, their initiation and control is little understood. Most previous studies have focused on the ecophysiology of adult algae only. We show that spores and/or germlings may represent critical stages in the life cycles and mass-developments of co-occurring opportunistic macroalgae in the Baltic (Pilayella littoralis and Enteromorpha spp.). We investigated the overwintering of spores, timing of germination, subsequent growth, and grazing on spores and germlings, in order to explain the initiation of mass blooms and species dominance patterns. In the field, Enteromorpha spp. showed 10- to 50-fold higher abundances of overwintering microscopic forms (up to 330 individuals cm−2) than P. littoralis. Moreover, we found continuous production of spores (up to 1.2 million settling spores m−2 h−1) from April to October in Enteromorpha spp., while there was evidence of only a short reproductive period in Pilayella. However, in spring, germlings and adults of P. littoralis appeared earlier in the field and reached a 10-fold higher biomass than Enteromorpha spp. In factorial laboratory experiments including temperature and light, there were clear differences in timing of germination. P. littoralis germinated at 5°C whereas Enteromorpha spp. required temperatures of 10–15°C for germination. In contrast, we detected only minor differences in growth response among adults of P. littoralis and Enteromorpha spp. Germination, not growth of adults, appeared to be the ecophysiological bottleneck for initiating mass spring development. Following the spring Pilayella bloom, Enteromorpha germlings occurred massively in the field (April–September), but rarely developed into adults. In laboratory feeding experiments we tested whether crustacean mesograzers common in summer may control development of Enteromorpha germlings. Both germination of settled spores and growth of germlings were reduced by 93–99% in the presence of grazers (Idotea chelipes and Gammarus locusta). Thus in addition to ecophysiological constraints, grazers, if present, may play a decisive role in the early life stages of macroalgal mass developments. These results mirror patterns of overwintering of seeds, germination control, seed and seedling predation in terrestrial plant communities.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5125
    Keywords: Enteromorpha spp ; spores ; algal mats ; Wadden Sea ; intertidal sandflat ; settlement ; dark resistance ; overwintering ; germination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract For the last two decades dense mats of species of the filamentous green algaeEnteromorpha spp. have regulary occurred on tidal flats of Köningshafen Bay (island Sylt, North Sea, FRG). In calm areas overwintering of adult plants or plant fragments is a common process to guarantee the mass development during the next season. In contrast, the distribution ofEnteromorpha on exposed sandy tidal flats depends on recruitment by juvenile stages. In 1993Enteromorpha spore settlement was recorded regularly in the field. Polyethylene dishes were placed in the field and left for a period of seven days and lateron cultivated in the laboratory to checkEnteromorpha germling development. During summer 1993 — at a minimum distance of 200 m to the nearest adultEnteromorpha populations — a total of at least 82×106 spores m−2 settled. During winter the number of spores attached to the collecting dishes was close to zero and the adjacent sand flats were free of any visibleEnteromorpha plants. In further experiments it was shown that the development ofEnteromorpha juveniles in the next spring depended on the overwintering capacity of spores. More than 2×106 spores m−2 attached to large sand grains and other substrata (e.g. Hydrobia ulvae) survived the winter. In a laboratory experiment several species ofEnteromorpha were able to survive in total darkness for at least 10 months.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...