GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (3)
  • 1995-1999  (3)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 25 (1). pp. 77-91.
    Publication Date: 2020-08-04
    Description: The Southern Hemisphere Subtropical Front (STF) is a narrow zone of transition between upper-level subtropical waters to the north and subantarctic waters to the south. It is found near 40 degrees S across the South Atlantic and South Indian Oceans and is associated with an eastward geostrophic current band, The current band in each basin is found at or just north of the surface front except near the eastern boundaries where most of the subtropical waters turn north into the eastern limbs of the subtropical gyres. The bands associated with the STF are thus distinct features separated from the strong zonal flows of the Antarctic Circumpolar Current farther south. The authors have referred to the current bands in the two respective oceans as the South Atlantic Current and the South Indian Ocean Current. In this paper the authors use the historical database from the South Pacific Ocean to investigate the geostrophic flow associated with the STF there. The STF extends across the southern Tasman Sea from south of Tasmania to southern New Zealand, and a weak eastward flow appears to be associated with it. The transport amounts to only about 3 Sv (1Sv = 10(6) m(3) s(-1)), little of which passes south of New Zealand. Mixing within the eddy-rich Tasman Sea may account for this weakness, while also setting up another more significant front in the northern Tasman Sea, the Tasman Front. It branches off from the East Australian Current toward the north of New Zealand, along which moves a flow of about 14 Sv. After passing north of New Zealand, a portion of this current flows east to contribute to a current band near 30 degrees S, while another portion turns south as the East Auckland Current and meets with subantarctic waters near Chatham Rise (44 degrees S), thus reestablishing the STF. An enhanced eastward current band is associated with the front there, one that extends across the remainder of the South Pacific and is referred to as the South Pacific Current. In comparison with its counterparts in the other basins, which typically begin by carrying 30 Sv (Atlantic) to 60 Sv (Indian) in the upper 1000 m in their western portions before weakening to 10-15 Sv in the east, the South Pacific Current is weak. Near Chatham Rise, it starts with a transport of approximately 5 Sv, and it remains near this strength as it shifts gradually north across the basin toward South America. The current appears to split into two smaller bands in the region of 115 degrees-85 degrees W, while near 28 degrees 5, 83 degrees W it begins to turn more strongly north and becomes shallower and weaker. Potential vorticity distributions indicate that this current acts as an impediment toward the northward spreading of Antarctic Intermediate Water, But why the South Pacific Current east of New Zealand should be so much weaker than its counterparts in the other basins is not particularly clear. It may be due to the presence of New Zealand and other topographic barriers to deep now east of Australia, to the axis of the subtropical gyre in the South Pacific shifting more rapidly southward with depth than those elsewhere, thus causing greater reductions in the underlying zonal velocities, and to strong poleward eddy heat and salt fluxes in the other two basins leading to smaller cross-STF gradients in the Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 28 (10). pp. 1904-1928.
    Publication Date: 2018-04-06
    Description: The mean warm water transfer toward the equator along the western boundary of the South Atlantic is investigated, based on a number of ship surveys carried out during 1990–96 with CTD water mass observations and current profiling by shipboard and lowered (with the CTD/rosette) acoustic Doppler current profiler and with Pegasus current profiler. The bulk of the northward warm water flow follows the coast in the North Brazil Undercurrent (NBUC) from latitudes south of 10°S, carrying 23 Sv (Sv ≡ 106 m3 s−1) above 1000 m. Out of this, 16 Sv are waters warmer than 7°C that form the source waters of the Florida Current. Zonal inflow from the east by the South Equatorial Current enters the western boundary system dominantly north of 5°S, adding transport northwest of Cape San Roque, and transforming the NBUC along its way toward the equator into a surface-intensified current, the North Brazil Current (NBC). From the combination of moored arrays and shipboard sections just north of the equator along 44°W, the mean NBC transport was determined at 35 Sv with a small seasonal cycle amplitude of only about 3 Sv. The reason for the much larger near-equatorial northward warm water boundary current than what would be required to carry the northward heat transport are recirculations by the zonal current system and the existence of the shallow South Atlantic tropical–subtropical cell (STC). The STC connects the subduction zones of the eastern subtropics of both hemispheres via equatorward boundary undercurrents with the Equatorial Undercurrent (EUC), and the return flow is through upwelling and poleward Ekman transport. The persistent existence of a set of eastward thermocline and intermediate countercurrents on both sides of the equator was confirmed that recurred throughout the observations and carry ventilated waters from the boundary regime into the tropical interior. A strong westward current underneath the EUC, the Equatorial Intermediate Current, returns low-oxygen water westward. Consistent evidence for the existence of a seasonal variation in the warm water flow south of the equator could not be established, whereas significant seasonal variability of the boundary regime occurs north of the equator: northwestward alongshore throughflow of about 10 Sv of waters with properties from the Southern Hemisphere was found along the Guiana boundary in boreal spring when the North Equatorial Countercurrent is absent or even flowing westward, whereas during June–January the upper NBC is known to connect with the eastward North Equatorial Countercurrent through a retroflection zone that seasonally migrates up and down the coast and spawns eddies. The equatorial zone thus acts as a buffer and transformation zone for cross-equatorial exchanges, but knowledge of the detailed pathways in the interior including the involved diapycnal exchanges is still a problem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-04
    Description: During December 1991 to April 1992 measurements with moored acoustic Doppler current profiler (ADCP) stations and shipboard surveys were carried out in the convection regime of the Gulf of Lions, northwestern Mediterranean. First significant mixed layer deepening and generation of internal waves in the stratified intermediate layer occurred during a mistral cooling phase in late December. Mixed layer deepening to about 400 m, eroding the salinity maximum layer of saltier and warmer Levantine Intermediate Water and causing temporary surface-layer warming, followed during a second cooling period of late January. During a mistral cooling period from 18 to 23 February 1992, convection to 1500-m depth was observed, where the size of the convection regime was 50–100 km extent. Vertical velocities 40–640 m deep, recorded by four ADCPs of a triangular moored array of 2 km sidelength in the center of the convection regime, exceeded 5 cm s−1 and were not correlated over the separation of the moorings. Horizontal scales estimated from event duration and advection velocity were only around 500 m, in agreement with scaling arguments for convective plumes. Plume activity during nighttime cooling was larger than daytime daytime. Significant evidence for rotation of the plumes could not be found. Overall, plume energy, and the degree of mixing accomplished by them, was much lower than observed during a stronger mistral in February 1987. The mean vertical velocity over the mistral period, determined from the four ADCPs, was near zero, confirming the role of plumes as mixing agents rather than as part of a mean downdraft in a convection regime. The cyclonic rim current around the convection regime was confined to a strip of 〈20 km width with an average velocity of about 10 cm s−1, which is in agreement with near-zero vertical mean velocity in the interior based on potential vorticity conservation. A relation between variations of the larger-scale cyclonic North Mediterranean Current along the boundary and the deep convection could not be identified. An unexplained feature still is the cover of the convection regime by a shallow layer of light water that moves in rather quickly from the sides after the cooling ends.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...