GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Document type
Years
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were significantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin [5-HT] in striatum, cortex and hippocampus by 60–90%). These decrements persisted for 7 days after METH, indicating effects reflective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the first evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 74 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: [3H]Dihydrotetrabenazine ([3H]DTBZ), a specific ligand for the vesicular monoamine transporter (VMAT2), has been used to characterize the integrity of monoaminergic nerve terminals in experimental animals and humans. The purpose of the present studies was to compare the loss of VMAT2 binding with the loss of other neurochemical markers of the dopamine (DA) nerve terminals in mice treated with neurotoxic doses of methamphetamine (METH) or MPTP. Profound decreases (≥70%) in DA content, tyrosine hydroxylase activity, and [3H]carbomethoxy-3-(4-fluorophenyl)tropane binding to the DA transporter were observed in striatal homogenates at both 1 and 6 days after exposure to the neurotoxins. It is surprising that no significant loss of [3H]DTBZ binding in the homogenates was observed at 1 day after exposure, although a significant loss (-50%) was apparent 6 days later. However, in isolated vesicle preparations, [3H]DTBZ binding and active [3H]DA uptake were markedly reduced (〉70%) at 1 day. These observations indicate that vesicle function is compromised at an early time point after exposure to neurotoxic insult. Furthermore, the changes in [3H]DTBZ binding in homogenates may not be a sensitive indicator of early damage to synaptic vesicles, although homogenate binding reliably identifies a loss of VMAT2 at later times.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...