GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 89 (2004), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Calsenilin, which was originally identified as a presenilin interacting protein, has since been shown to be involved in the processing of presenilin(s), the modulation of amyloid β-peptide (Aβ) levels and apoptosis. Subsequent to its original identification, calsenilin was shown to act as a downstream regulatory element antagonist modulator (and termed DREAM), as well as to interact with and modulate A-type potassium channels (and termed KChIP3). Calsenilin is primarily a cytoplasmic protein that must translocate to the nucleus to perform its function as a transcriptional repressor. This study was designed to determine the cellular events that modulate the translocation of calsenilin from the cytoplasm to the nucleus. The nuclear translocation of calsenilin was found to be enhanced following serum deprivation. A similar effect was observed when cells were treated with pharmacological agents that directly manipulate the levels of intracellular calcium (caffeine and the calcium ionophore A23187), suggesting that the increased levels of calsenilin in the nucleus are mediated by changes in intracellular calcium. A calsenilin mutant that was incapable of binding calcium retained the ability to translocate to the nucleus. Taken together, these findings indicate that the level of intracellular calcium can modulate the nuclear translocation of calsenilin and that this process does not involve the direct binding of calcium to calsenilin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Studies of metabolism of the Alzheimer amyloid precursor protein (APP) have focused much recent attention on the biology of juxta- and intra-membranous proteases. Release or ‘shedding’ of the large APP ectodomain can occur via one of two competing pathways, the α- and β-secretase pathways, that are distinguished both by subcellular site of proteolysis and by site of cleavage within APP. The α-secretase pathway cleaves within the amyloidogenic Aβ domain of APP, precluding the formation of toxic amyloid aggregates. The relative utilization of the α- and β-secretase pathways is controlled by the activation of certain protein phosphorylation signal transduction pathways including protein kinase C (PKC) and extracellular signal regulated protein kinase [ERK/mitogen-activated protein kinase (MAP kinase)], although the relevant substrates for phosphorylation remain obscure. Because of their apparent ability to decrease the risk for Alzheimer disease, the effects of statins (HMG CoA reductase inhibitors) on APP metabolism were studied. Statin treatment induced an APP processing phenocopy of PKC or ERK activation, raising the possibility that statin effects on APP processing might involve protein phosphorylation. In cultured neuroblastoma cells transfected with human Swedish mutant APP, atorvastatin stimulated the release of α-secretase-released, soluble APP (sAPPα). However, statin-induced stimulation of sAPPα release was not antagonized by inhibitors of either PKC or ERK, or by the co-expression of a dominant negative isoform of ERK (dnERK), indicating that PKC and ERK do not play key roles in mediating the effect of atorvastatin on sAPPα secretion. These results suggest that statins may regulate α-secretase activity either by altering the biophysical properties of plasma membranes or by modulating the function of as-yet unidentified protein kinases that respond to either cholesterol or to some intermediate in the cholesterol metabolic pathway. A ‘phospho-proteomic’ analysis of N2a cells with and without statin treatment was performed, revealing changes in the phosphorylation state of several protein kinases plausibly related to APP processing. A systematic evaluation of the possible role of these protein kinases in statin-regulated APP ectodomain shedding is underway.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Several lines of evidence suggest that tyrosine phosphorylation is a key element in myelin formation, differentiation of oligodendrocytes and Schwann cells, and recovery from demyelinating lesions. Multiple sclerosis is a demyelinating disease of the human central nervous system, and studies of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...