GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1990-1994  (3)
Document type
Years
Year
  • 1
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Two detailed vertical profiles through a complex plume of phenolic contaminants in a Triassic sandstone aquifer show that natural attenuation by biodegradation and dispersion is active but very slow. The plume has a microbially active aerobic and NO3 reducing fringe that is less than 2 m thick at both 150 and 350 m downstream of the source. The anaerobic core has evidence of active bacterial populations and degradation at total organic carbon (TOC) concentrations up to at least 1400 mg/L (1800 mg/L total phenolics), although gross half-lives are more than 50 years. There is evidence from the same locations of Mn, Fe, and SO4 reduction, with the latter inhibited by the pollutant matrix and not significant at concentrations more than 1000 mg/L TOC. Degradation of these contaminants in this aquifer is influenced by a range of environmental factors, including the chemical toxicity and pH of the contaminant matrix, and inputs of electron acceptors into the plume by dispersion. The results show that the plume is likely to grow under the present conditions, despite the biodegradable nature of the organic pollutants and availability of suitable electron acceptors. Vertical profiles have proved a cost-effective method of understanding the evolution of the plume.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Silicified deposits, such as sinters, occur in several modern geothermal environments, but the mechanisms of silicification (and crucially the role of microorganisms in their construction) are still largely unresolved. Detailed examination of siliceous sinter, in particular sections of microstromatolites growing at the Krisuvik hot spring, Iceland, reveals that biomineralization contributes a major component to the overall structure, with approximately half the sinter thickness attributed to silicified microorganisms. Almost all microorganisms observed under the scanning electron microscope (SEM) are mineralized, with epicellular silica ranging in thickness from 〈 5 μm coatings on individual cells, to regions where entire colonies are cemented together in an amorphous silica matrix tens of micrometres thick. Within the overall profile, there appears to be two very distinct types of laminae that alternate repeatedly throughout the microstromatolite: ‘microbial’ layers are predominantly consisting of filamentous, intact, vertically aligned, biomineralized cyanobacteria, identified as Calothrix and Fischerella sp.; and weakly laminated silica layers which appear to be devoid of any microbial component. The microbial layers commonly have a sharply defined base, overlying the weakly laminated silica, and a gradational upper surface merging into the weakly laminated silica. These cyclic laminations are probably explained by variations in microbial activity. Active growth during spring/summer allows the microorganisms to keep pace with silicification, with the cell surfaces facilitating silicification, while during their natural slow growth phase in the dark autumn/winter months silicification exceeds the bacteria’s ability to compensate (i.e. grow upwards). At this stage, the microbial colony is probably not essential to microstromatolite formation, with silicification presumably occurring abiogenically. When conditions once again become favourable for growth, recolonization of the solid silica surface by free-living bacteria occurs: cell motility is not responsible for the laminations. We have also observed that microbial populations within the microstromatolite, some several mm in depth, appear viable, i.e. they still have their pigmentation, the trichomes are not collapsed, cell walls are unbroken, cytoplasm is still present and they proved culturable. This suggests that the bulk of silicification occurred rapidly, probably while the cells were still alive. Surprisingly, however, measurements of light transmittance through sections of the microstromatolite revealed that photosynthetically active light (PAL) only transmitted through the uppermost 2 mm. Therefore the ‘deeper’ microbial populations must have either: (i) altered their metabolic pathways; (ii) become metabolically inactive; or (iii) the deeper populations may be dominated by different microbial assemblages from that of the surface. From these collective observations, it now seems unequivocal that microstromatolite formation is intimately linked to microbial activity and that the sinter fabric results from a combination of biomineralization, cell growth and recolonization. Furthermore, the similarities in morphology and microbial component to some Precambrian stromatolites, preserved in primary chert, suggests that we may be witnessing contemporaneous biomineralization processes and growth patterns analogous to those of the early Earth.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 349 (1991), S. 151-154 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The area investigated is in Connemara, western Ireland, where a late Precambrian (Dalradian) succession of sediments has undergone a complex history of folding and metamorphism8, culminating in a low-pressure, high-temperature metamorphism with accompanying folding (D3) that was related to the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 352 (1991), S. 484-484 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] YARDLEY ET AL. REPLY - The differences between our interpretation of regional fluid flow through the Connemara marble and Tanner's arise through differences in our maps; oversimplifications that inevitably accompany a short article; and because of differences in interpretation of the relative ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geochemistry and health 15 (1993), S. 21-25 
    ISSN: 1573-2983
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Medicine
    Notes: Abstract Erosion of the Edale shales of Derbyshire during the Tertiary and Quaternary has resulted in sediment deposits in and on the underlying karstified limestones. Sorting during sedimentation has generated clay-rich sediments which are uranium enriched due to a clay association of uranium in the shales. Radon production in these sediments is at or close to equilibrium with their uranium content, and their fine grain-size ensures efficient radon release. Such sediments are therefore potent local sources of environmental radon.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...