GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (3)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2005. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 63 (2005): 729-752, doi:10.1357/0022240054663204.
    Description: The properties of water mass transformation and the thermohaline circulation in shallow marginal seas with topography and subject to surface cooling are discussed in the context of an eddy-resolving primitive equation model and an analytic planetary geostrophic model. A unique and important aspect of the model configuration is that the geostrophic contours, or characteristics of the system, extend from a region where temperature is restored toward a uniform value, providing a source of heat, through the cooling region. This removes a degree of symmetry that has often been imposed in previous studies of deep convection. The heat loss within the marginal sea is balanced by lateral advection from the restoring region. The planetary geostrophic model shows that the basic temperature distribution can be well predicted by integrating along geostrophic contours from their entry into the marginal sea to their exit. Scaling estimates for the exchange rate and density of the waters formed within the marginal sea are derived and compare well with a series of numerical model calculations. In contrast to many previous buoyancy-forced deep convection problems, basin-scale cooling is balanced mainly by the mean flow, with mesoscale eddies serving primarily to restratify locally but not to provide a net heat flux to balance cooling. However, eddy fluxes and the mean flow are locally of comparable importance for cases with a localized patch of surface cooling.
    Description: This work was supported by the Office of Naval Research under Grant N00014-03-1-0338 and by the National Science Foundation under Grant OCE-0240978.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1589446 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2009. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 67 (2009): 273-303, doi:10.1357/002224009789954757.
    Description: An idealized model for a convective basin is used to investigate the mechanisms of variability of the formation and export of dense water. In this model, which consists of two isopycnic layers, dense water formation is induced by surface buoyancy loss in the interior, which is at rest. Newly formed dense water is transmitted to the surrounding boundary current through parameterized eddy fluxes. Variability in the formation and export of dense water is due to changes in the two main drivers: variations in the surface buoyancy fluxes and variations in the large-scale wind via a barotropic boundary current. Numerical integrations of the nonlinear model, with parameters and forcings corresponding to the Labrador Sea, show that the rate of dense water formation in the interior of the basin is strongly affected by changes in the buoyancy forcing, but not significantly affected by seasonal to interannual changes in the wind-driven barotropic boundary current. The basin tends to integrate the buoyancy forcing variability with a memory time scale set by eddies, which is decadal for the Labrador Sea. Variability in dense water export, on the contrary, is strongly affected by changes in the wind-driven barotropic boundary current but hardly affected by changes in buoyancy forcing. Indeed changes in the transport of dense water at the basin outflow are dominated by those at the basin inflow, which, in this model, are directly related to fluctuations in the wind-driven barotropic boundary current. These results, which are consistent with analytical solutions of the linear model, suggest that fluctuations in the surface buoyancy fluxes in the interior Labrador Sea have little impact on the interannual variability of the dense water transport by the Deep Western Boundary Current at the outflow of the Labrador Sea, which is dominated by fluctuations in the wind-driven North Atlantic subpolar gyre, but influence the formation and export of recently ventilated waters.
    Description: Support for JD from the NOAA Office of Hydrologic Development through a scientific appointment administered by UCAR is gratefully acknowledged. Support for FS was provided by NSF grant OCE−0525929. Support for MAS was provided by NSF grant OCE−0423975.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 325-345, doi:10.1357/002224008786176016.
    Description: The properties of water mass transformation in a semi-enclosed basin, separated from the open ocean by a sill and subject to surface cooling, are analyzed both theoretically and numerically using an ocean general circulation model. This study extends previous studies of convection in a marginal sea to the case with a sill. The sill has a strong impact on both the properties of the dense water formed in the interior and on those of the waters flowing out the marginal sea. It results in a colder interior and colder outflow compared to the case with no sill. Dynamically, this is explained by considering that the sill limits the geostrophic contours over which the open ocean/marginal sea exchange can occur. The impact of the sill, however, is not simply limited to a topographic constriction; instead the sill also decreases the stability of the boundary current, which, in turn, results in relatively large heat flux into the interior and colder outflow. The theories that relate the properties of the dense waters formed in the interior, and those of the outflow, are modified to include the impact of the sill. These are found to compare well with the numerical simulations and provide a useful tool for the interpretation of these results. These idealized simulations capture the basic features of the water mass transformation processes in the Nordic Seas and, in particular, provide a dynamical explanation for the difference between the dense waters formed and the source of the overflows water.
    Description: DI was supported by the Polar Ocean Climate Processes (ProClim) project funded by the Norwegian Research Council. FS was supported by a visiting scientist fellowship from the Bjerknes Centre for Climate Research (Bergen, Norway) and by NSF Ocean Sciences Grant 0525929. Support for MAS was provided by NSF Office of Polar Programs Grant 0421904 and NSF Ocean Sciences Grant 0423975.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...