GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Newark :John Wiley & Sons, Incorporated,  (1)
  • 2005-2009  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Geomicrobiology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (443 pages)
    Ausgabe: 1st ed.
    ISBN: 9781444309027
    DDC: 579
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- 1 Microbial properties and diversity -- 1.1 Classification of life -- 1.2 Physical properties of microorganisms -- 1.2.1 Prokaryotes -- 1.2.2 Eukaryotes -- 1.3 Requirements for growth -- 1.3.1 Physical requirements -- 1.3.2 Chemical requirements -- 1.3.3 Growth rates -- 1.4 Microbial diversity -- 1.5 Life in extreme environments -- 1.5.1 Hydrothermal systems -- 1.5.2 Polar environments viable population is available to seed the global -- 1.5.3 Acid environments -- 1.5.4 Hypersaline and alkaline environments -- 1.5.5 Deep-subsurface environments -- 1.5.6 Life on other planets -- 1.5.7 Panspermia -- 1.6 Summary -- 2 Microbial metabolism -- 2.1 Bioenergetics -- 2.1.1 Enzymes -- 2.1.2 Oxidation-reduction -- 2.1.3 ATP generation -- 2.1.4 Chemiosmosis -- 2.2 Photosynthesis -- 2.2.1 Pigments -- 2.2.2 The light reactions - anoxygenic photosynthesis -- 2.2.3 Classification of anoxygenic photosynthetic bacteria -- 2.2.4 The light reactions - oxygenic photosynthesis -- 2.2.5 The dark reactions -- 2.2.6 Nitrogen fixation -- 2.3 Catabolic processes -- 2.3.1 Glycolysis and fermentation -- 2.3.2 Respiration -- 2.4 Chemoheterotrophic pathways -- 2.4.1 Aerobic respiration -- 2.4.2 Dissimilatory nitrate reduction -- 2.4.3 Dissimilatory manganese reduction -- 2.4.4 Dissimilatory iron reduction -- 2.4.5 Trace metal and metalloid reductions -- 2.4.6 Dissimilatory sulfate reduction -- 2.4.7 Methanogenesis and homoacetogenesis -- 2.5 Chemolithoautotrophic pathways -- 2.5.1 Hydrogen oxidizers -- 2.5.2 Homoacetogens and methanogens -- 2.5.3 Methylotrophs -- 2.5.4 Sulfur oxidizers -- 2.5.5 Iron oxidizers -- 2.5.6 Manganese oxidizers -- 2.5.7 Nitrogen oxidizers -- 3 Cell surface reactivity and metal sorption -- 3.1 The cell envelope -- 3.1.1 Bacterial cell walls -- 3.1.2 Bacterial surface layers -- 3.1.3 Archaeal cell walls. , 3.1.4 Eukaryotic cell walls -- 3.2 Microbial surface charge -- 3.2.1 Acid-base chemistry of microbial surfaces -- 3.2.2 Electrophoretic mobility -- 3.2.3 Chemical equilibrium models -- 3.3 Passive metal adsorption -- 3.3.1 Metal adsorption to bacteria -- 3.3.2 Metal adsorption to eukaryotes -- 3.3.3 Metal cation partitioning -- 3.3.4 Competition with anions -- 3.4 Active metal adsorption -- 3.4.1 Surface stability requirements -- 3.4.2 Metal binding to microbial exudates -- 3.5 Bacterial metal sorption models -- 3.5.1 Kd coefficients -- 3.5.2 Freundlich isotherms -- 3.5.3 Langmuir isotherms -- 3.5.4 Surface complexation -- 3.5.5 Does a generalized sorption model exist? -- 3.6 The microbial role in contaminant mobility -- 3.6.1 Microbial sorption to solid surfaces -- 3.6.2 Microbial transport through porous media -- 3.7 Industrial applications based on microbial surface reactivity -- 3.7.1 Bioremediation -- 3.7.2 Biorecovery -- 3.8 Summary -- 4 Biomineralization -- 4.1 Biologically induced mineralization -- 4.1.1 Mineral nucleation and growth -- 4.1.2 Iron hydroxides -- 4.1.3 Magnetite -- 4.1.4 Manganese oxides -- 4.1.5 Clays -- 4.1.6 Amorphous silica -- 4.1.7 Carbonates -- 4.1.8 Phosphates -- 4.1.9 Sulfates -- 4.1.10 Sulfide minerals -- 4.2 Biologically controlled mineralization -- 4.2.1 Magnetite -- 4.2.2 Greigite -- 4.2.3 Amorphous silica -- 4.2.4 Calcite -- 4.3 Fossilization -- 4.3.1 Silicification -- 4.3.2 Other authigenic minerals -- 4.4 Summary -- 5 Microbial weathering -- 5.1 Mineral dissolution -- 5.1.1 Reactivity at mineral surfaces -- 5.1.2 Microbial colonization and organic reactions -- 5.1.3 Silicate weathering -- 5.1.4 Carbonate weathering -- 5.1.5 Soil formation -- 5.1.6 W eathering and global climate -- 5.2 Sulfide oxidation -- 5.2.1 Pyrite oxidation mechanisms -- 5.2.2 Biological role in pyrite oxidation -- 5.2.3 Bioleaching. , 5.2.4 Biooxidation of refractory gold -- 5.3 Microbial corrosion -- 5.3.1 Chemolithoautotrophs -- 5.3.2 Chemoheterotrophs -- 5.3.3 Fungi -- 5.4 Summary -- 6 Microbial zonation -- 6.1 Microbial mats -- 6.1.1 Mat development -- 6.1.2 Photosynthetic mats -- 6.1.3 Chemolithoautotrophic mats -- 6.1.4 Biosedimentary structures -- 6.2 Marine sediments -- 6.2.1 Organic sedimentation -- 6.2.2 An overview of sediment diagenesis -- 6.2.3 Oxic sediments -- 6.2.4 Suboxic sediments -- 6.2.5 Anoxic sediments -- 6.2.6 Preservation of organic carbon Preservation of organic carbon -- 6.2.7 Diagenetic mineralization -- 6.2.8 Sediment hydrogen concentrations -- 6.2.9 Problems with the biogeochemical zone scheme -- 6.3 Summary -- 7 Early microbial life -- 7.1 The prebiotic Earth -- 7.1.1 The Hadean environment -- 7.1.2 Origins of life -- 7.1.3 Mineral templates -- 7.2 The first cellular life forms -- 7.2.1 The chemolithoautotrophs -- 7.2.2 Deepest-branching Bacteria and Archaea -- 7.2.3 The fermenters and initial respirers -- 7.3 Evolution of photosynthesis -- 7.3.1 Early phototrophs -- 7.3.2 Photosynthetic expansion -- 7.3.3 The cyanobacteria -- 7.4 Metabolic diversification -- 7.4.1 Obligately anaerobic respirers -- 7.4.2 Continental platforms as habitats -- 7.4.3 Aerobic respiratory pathways -- 7.5 Earth's oxygenation -- 7.5.1 The changing Proterozoic environment -- 7.5.2 Eukaryote evolution -- 7.6 Summary -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...