GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-31
    Description: The foraging modes of calanoid copepods differ in that stationary suspension-feeding is more easily detected by prey with strong escape responses (ciliates) than is ‘cruising’ or ‘ambushing’ feeding. Thus, the ability of a copepod to include heterotrophic prey in its diet may be associated with its foraging mode and, further, with its nitrogen stable isotope signature (δ15N). This is because a more carnivorous diet may be expected to result in a higher δ15N. We tested this hypothesis in a mesocosm study using a density gradient (0 to 80 ind. l-1) of calanoid copepods. We expected copepod δ15N to generally increase with decreasing copepod density because of increased food availability, and predicted stronger increases for cruising than for stationary suspension-feeding species. As an assemblage, copepods had a pronounced impact on the food web: diatoms and ciliates decreased, whereas nanoflagellates increased with increasing copepod density. As expected, Centropages hamatus, a cruising species, showed the strongest isotopic increase and also highest population growth at low copepod density, suggesting that it was the most efficient species in capturing ciliates. Temora longicornis, a stationary suspension-feeder, showed a uniform isotopic increase in all mesocosms, which we believe resulted from nutritional stress arising from poor feeding on both ciliates (too fast for ingestion by T. longicornis) and nanoflagellates (too small). However, Pseudocalanus elongatus, a species equally categorised as a stationary suspension-feeder, showed increases in its δ15N similar to those for C. hamatus. While this may indicate potential switching in its foraging mode, alternative explanations cannot be ruled out, partly because qualitative and quantitative aspects of trophic enrichment in our experiment could not be clearly separated. This study shows that consumer δ15N are difficult to interpret, even if potential food sources and aspects of the species’ biology are known, and thus emphasises the necessity for further laboratory studies to help better interpret zooplankton δ15N in the field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 324 . pp. 105-112.
    Publication Date: 2018-05-31
    Description: In a mesocosm experiment in Kiel Fjord, the plankton community 〈250 µm was exposed to a mesozooplankton density gradient (5 to 80 individuals l–1) dominated by the calanoid copepod Acartia clausi. Over the experimental period (9 d), the diazotrophic cyanobacterium Nodularia spumigena increased exponentially, irrespective of mesozooplankton densities, attaining maximum concentrations of 1200 cells ml–1 (3700 filaments l–1). At the end of the experiment, the δ15N of particulate organic matter was negatively correlated with N. spumigena concentrations, indicating the fixation of isotopically ‘light’, diazotrophic nitrogen. In all treatments, final copepod δ15N were lower (–0.7 to –2.7‰) than initial copepod δ15N, indicating the transfer of diazotrophic nitrogen to mesozooplankton. Based on a simple isotopic mixing model, diazotrophic nitrogen was calculated to contribute 45 to 6% to final copepod δ15N along the mesozooplankton gradient. This translates to a transfer of 2 to 24% of net nitrogen fixation to the mesozooplankton standing stock. The absence of any mesozooplankton impact on N. spumigena, and the negative impact found for other microplankton, including diatoms and ciliates, suggest that diazotrophically fixed nitrogen reached mesozooplankton indirectly through trophic vectors. This is consistent with the fact that copepod δ15N decreased with decreasing mesozooplankton densities, since only a quantitatively limited dietary source may be expected to result in density-dependent changes in copepod δ15N. Considering that natural mesozooplankton densities in the Baltic Sea rarely exceed 10 ind. l–1, the contribution of diazotrophically fixed nitrogen to mesozooplankton may be substantial (23 to 45%) during summer blooms of diazotrophic cyanobacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The response of the phytoplankton and bacterial spring succession to the predicted warming of sea surface temperature in temperate climate zones during winter was studied using an indoor-mesocosm approach. The mesocosms were filled with winter water from the Kiel Fjord, Baltic Sea. Two of them were started at ~2°C and the temperature was subsequently increased according to the decadal temperature profile of the fjord (ΔT 0°C, baseline treatment). The other mesocosms were run at 3 elevated temperatures with differences of ΔT +2, +4 and +6°C. All mesocosms were exposed to the same light conditions. Timing of peak phytoplankton primary production (PP) during the experimental spring bloom was not significantly influenced by increasing temperatures, whereas the peak of bacterial secondary production (BSP) was accelerated by about 2 d per °C. This suggests that, in case of warming, the spring peak of bacterial degradation of organic matter (in terms of BSP) would occur earlier in the year. Furthermore, the lag time between the peaks of PP and BSP (about 16 d for ΔT 0°C) would diminish progressively at elevated temperatures. The average ratio between BSP and PP increased significantly from 0.37 in the coldest mesocosms to 0.63 in the warmest ones. Community respiration and the contribution of picoplankton (〈3 µm fraction) to this also increased at elevated temperatures. Our results lead to the prediction that climate warming during the winter/ early spring in temperate climate zones will favor bacterial degradation of organic matter by tightening the coupling between phytoplankton and bacteria. However, if PP is reduced by warming, as in our experiments, this will not necessarily lead to increased recycling of organic matter (and CO2).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-01
    Description: Multiple stable isotope and fatty acid analyses were applied to examine food web dynamics in an eelgrass Zostera marina L. system in the western Baltic Sea. Samples of eelgrass, epiphytic algae, sand microflora, red algae, phytoplankton and main consumer species were collected in June 2002. delta C-13 values of primary producers ranged from -9.6%. for eelgrass to the most depleted value of -34.9%. for the most abundant red alga, Delesseria sanguinea, Epiphyte delta C-13 (-11.3 parts per thousand.) was close to the value for eelgrass, whereas sand microflora and phytoplankton showed intermediate values (-20.0 and -22.6 parts per thousand, respectively). delta C-13 values of consumer species varied from - 12.2 parts per thousand in the gastropod Lacuna vincta to -23.9 parts per thousand in the amphipod Amphitoe rubricata. Epiphytes, sand microflora and phytoplankton had relatively similar fatty acid signatures, indicating a dominance of diatoms. Fatty acid composition of the main consumers included the biomarker fatty acids for diatoms and red algae, whereas those for eelgrass were negligible. The stable isotope data in combination with the results of the fatty acid analysis strongly indicated that the food web in this eelgrass community was based on epiphytes, sand microflora and red algae. Additionally, the continuous distribution of delta N-15 values implied a food web that was characterized by a large proportion of generalist feeders in every group of consumers and by a high degree of omnivory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...