GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (4)
Document type
Years
Year
  • 1
    Publication Date: 2014-06-25
    Description: Magnetic anomaly identifications underpin plate tectonic reconstructions and form the primary dataset from which age of the oceanic lithosphere and seafloor spreading regimes in the ocean basins can be determined. Although these identifications are an invaluable resource, their usefulness to the wider scientific community has been limited due to the lack of a central community infrastructure to organize, host and update these interpretations. We have developed an open-source, community-driven online infrastructure as a repository for quality-checked magnetic anomaly identifications from all ocean basins. We provide a global sample dataset that comprises 96,733 individually picked magnetic anomaly identifications organized by ocean basin and publication reference, and provide accompanying Hellinger-format files, where available. Our infrastructure is designed to facilitate research in plate tectonic reconstructions or research that relies on an assessment of plate reconstructions, for both experts and non-experts alike. To further enhance the existing repository and strengthen its value, we encourage others in the community to contribute to this effort.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-19
    Description: Environmental Science & Technology DOI: 10.1021/es301898u
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-08
    Description: Reliable projections of climate-change impacts on biodiversity are vital in formulating conservation and management strategies that best retain biodiversity into the future. While recent modelling has focussed largely on individual species, macroecology has the potential to add significant value to these efforts, by incorporating important community-level constraints and processes. Here we show how a new dynamic macroecological approach can project climate-change impacts collectively across all species in a diverse taxonomic group, overcoming shortfalls in our knowledge of biodiversity, while incorporating the key processes of dispersal and community assembly. Our approach applies a recently published technique ( Dynamic FOAM) to predict the present composition of every community, which form the initial conditions for a new metacommunity model (M-SET) that projects changes in composition over time, under specified climate and habitat scenarios. Applying this approach at fine resolution to plant biodiversity in Tasmania (2,051 species; 1,157,587 communities), we project high average turnover in community composition from 2010 to 2100 (mean Sorensen's dissimilarity = 0.71 (±7.0 x 10 -5 )), with major reductions in species richness (32.9 (±0.02) species lost per community) and no plant species benefitting from climate change in the long term. We also demonstrate how our modelling approach can identify habitat likely to be of high value for retaining rare and poorly reserved species under climate change. Our analyses highlight the potential value of this dynamic macroecological approach, that incorporates key ecological processes in projecting climate change impacts for all species simultaneously and uses simple macroecological inputs that can be derived even for highly diverse and poorly studied taxa.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-29
    Description: Fossil assemblages of the Ordovician to Devonian successions of Japan suggest complex temporal, environmental and geographical controls on their biogeographical signature. Thus, limited similarity at the species-level between the trilobite, brachiopod and ostracod faunas of the South Kitakami, Hida-Gaien and Kurosegawa terranes in part reflects the sporadic stratigraphic distribution of shelly fauna within these terranes. As a result, and with the exception of corals and pan-tropical radiolarians, species-level similarities are greater with other regions of East Asia and Australia than amongst the Japanese terranes. The Silurian faunas of the South Kitakami Terrane have affinities with North America, Europe, Central Asia and Australia, but there is no overriding signature to support proximity either to South China or Gondwana. Notably, brachiopod and trilobite faunas of the Middle Devonian suggest strong connections with North China. Trilobite, coral and ostracod faunas of the Hida-Gaien Terrane show affinity, including at species level, with Siluro-Devonian faunas from westerly-situated palaeocontinents, especially those of Central Asian and European affinity, suggesting a continuation of the Central Asian Orogenic Belt, or of its associated lithofacies. Greater diversity of groups such as ostracods and trilobites in this terrane may signal closer links with continental shelf faunas of East Asia. The dominant biogeographical signature of the Kurosegawa Terrane is from corals and trilobites, suggesting links with the Siluro-Devonian of Central Asia, Australia and South China. The variable biogeographic signal of the Japanese faunas may reflect the lifestyles of organisms with different physiologies and larval dispersal mechanisms, as well as the relative incompleteness of the Japanese fossil record. The present state of knowledge of the faunas cautions against placing Japan in relative proximity to the North or South China plates, or of presenting the Japanese terranes as a unified island arc to the north of the South China Plate during the Early Palaeozoic.
    Print ISSN: 1038-4871
    Electronic ISSN: 1440-1738
    Topics: Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...