GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Soil gas anomalies are useful to recognize influences of surface features on natural gas migration. The study of the association of different gases (with different origin and physical/chemical behavior), the collection of a large number of samples during periods of stable meteorological and soil moisture conditions (e.g., during dry season) and the use of appropriate statistical treatment of data are fundamental in the comprehension of gas migration mechanism. Gas geochemistry has been proven to be a reliable and simple technique to apply, at different scales, to many geological scenarios [Quattrocchi et al. 2001; Baubron et al. 2002; De Gregorio et al. 2002; Pizzino et al. 2002; Lewicki et al. 2003; Voltattorni et al. 2009; Lombardi and Voltattorni, 2010]. The study of spatial distribution of soil gas anomalies, at the surface, can give important and interesting information on the origin and processes involving deep and superficial gas species. This information can be applied and studied in different frameworks, for example: 1.geological sequestration of anthropogenic CO2 to reduce the amount of greenhouse gases released to the atmosphere. Natural gas emissions represent extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO2 (i.e., the return to surface potentially causing localized environmental problems). 2.radionuclide migration in the study of high-level radioactive-waste isolation systems. The main approach is to study the natural migration of radiogenic particles or elements throughout clay formations that are considered an excellent isolation and sealing material due to their ability to immobilize water and other substance over geological timescales.
    Description: Published
    Description: 87-91
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: N/A or not JCR
    Description: open
    Keywords: natural gas emission, gas migration ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: La regione Abruzzo è stata interessata a partire dal 6 Aprile 2009 da una sequenza sismica in un’area che si estende per oltre 30 km in direzione interessata, 2009, NO-SE, parallelamente all'asse della catena appenninica. I terremoti della sequenza sono avvenuti principalmente nella crosta superiore, entro 10-12 km di profondità eccetto l'evento Ml=5.3 del 7 Aprile a SE de L'Aquila ha una profondità di circa 15 km. Studi effettuati finora concordano nell'identificare la struttura responsabile della scossa principale come una faglia con movimento diretto che si estende per circa 15 km in direzione NO-SE ed immersione SO e la cui estensione in superficie si localizza in corrispondenza della faglia di Paganica. Una campagna di gas del suolo (misure di concentrazione puntuali e di flusso è stata effettuata in un’area di circa 24 km2 (a pochi chilometri di distanza dalla città de L’Aquila) compresa fra le faglie di Paganica, Bazzano e Monticchio-Fossa al fine di uno studio del degassamento relazionato alle strutture (faglie e/o fratture) principali (causa della sequenza sismica) e secondarie quali lineamenti trasversi e faglie “nascoste” (faglie non note in letteratura o non visibili in superficie). Sono state effettuate 186 misure di radon, altrettante di flusso (CO2 e CH4) e raccolti 186 campioni di gas nel suolo per analisi di laboratorio (He, H2, O2, N2, CO2, CH4, H2S). Inoltre, circa 200 misure di flussi di gas sono state effettuate su 10 profili intersecanti la faglia di Paganica
    Description: Unpublished
    Description: INGV - sezione di Palermo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: L'Aquila earthquake ; soil-gas measurements ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Geochemical studies were conducted using soil-gas and flux surveyings for locating both permeable zones in buried reservoirs and the presence of possible gaseous haloes linked to active geothermal systems. In this work we focused our interest on the distribution of soil-gas concentrations (Rn, Th, He, H2, O2, N2, CO2, CH4 and H2S) in the soil air of the Tetitlan area (Nayarit, Mexico) considered a potential thermal field and characterized by scarcity of surface manifestations. A total of 154 soil-gas samples and 346 CO2 and CH4 flux measurements were collected in an area of about 80 square kilometres. The performed soil-gas and flux geochemical surveys highlighted a general rising patterns linked to local fault system, with the important implication that the highest CO2 and CH4 fluxes, as well as Rn concentrations, could be used in undeveloped geothermal systems to identify main upflow regions and areas of increased and deep permeability.
    Description: chevron, pertamina, hulliburton, ormat,itochu
    Description: Unpublished
    Description: Bali, Indonesia
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil-gas geochemistry ; hidden geothermal reservoir ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The 2009-2010 L'Aquila seismic sequence is still slightly occurring along the central Apenninic Belt (August 2010), spanning more than one year period. The main- shock (Mw 6.3) occurred on April 6th at 1:32 (UTC). The earthquake was destructive and caused among 300 casualties. The hypocenter has been located at 42.35°N, 13.38° at a depth of around 10 km. The main shock was preceded by a long seismic sequence starting several months before (i.e., March, 30, 2009 with Mw 4.1; April, 5 with Mw 3.9 and Mw 3.5, a few hours before the main shock). A lot of evidences stress the role of deep fluids porepressure evolution – possibly CO2 or brines - as occurred in the past, along seismically activated segments in Apennines. Our geochemical group started to survey the seismically activated area soon after the main-shock, by sampling around 1000 soil gas points and around 80 groundwater points (springs and wells, sampled on monthly basis still ongoing), to help in understanding the activated fault segments geometry and behaviour, as well as leakage patterns at surface (CO2, CH4, Radon and other geogas as He, H2, N2, H2S, O2, etc...), in the main sector of the activated seismic sequence, not far from a deep natural CO2 reservoir underground (termomethamorphic CO2 from carbonate diagenesis), degassing at surface only over the Cotilia-Canetra area, 20 km NW from the seismically activated area. The work highlighted that geochemical measurements on soils are very powerful to discriminate the activated seismogenic segments at surface, their jointing belt, as well as co-seismic depocenter of deformation. Mostly where the measured “threshold” magnitude of earthquakes (around 6), involve that the superficial effects could be absent or masked, our geochemical method demonstrated to be strategic, and we wish to use these methods in CO2 analogues/CO2 reservoir studies abroad, after done in Weyburn. The highlighted geochemical -slight but clear- anomalies are, in any case, not dangerous for the human health and keep away the fear around the CO2-CH4 bursts or explosions during strong earthquakes, as the L'Aquila one, when these gases are stored naturally/industrially underground in the vicinity (1-2 km deep). These findings are not new for these kind of Italian seismically activated faults and are very useful for the CO2- CH4 geological storage public acceptance: not necessarily (rarely or never) these geogas escape abruptly from underground along strongly activated faults.
    Description: Government of the Netherlands, EON, Shell
    Description: Unpublished
    Description: RAI, Amsterdam, The Netherlands
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: CO2 analougues ; seismogenic faults ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...