GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Keywords
Publisher
Language
Years
Year
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (60 Seiten = 4 MB) , Graphen, Karten
    Edition: Online-Ausgabe 2021
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-19
    Description: Highlights: • Incubation experiments showed an omnivore feeding of Calanus finmarchicus. • Ciliates were positively selected by C. finmarchicus at varying food concentrations. • The degree of omnivory depended on the proportion of ciliates available. Abstract: The feeding selectivity of Calanus finmarchicus was studied by carrying out three incubation experiments; two experiments with natural seawater sampled during spring bloom (Exp. 1) and post-bloom conditions (Exp. 2) and a third experiment with cultured dinoflagellates and ciliates (Exp. 3). In the first two experiments a gradient in ciliate concentration was created to investigate the potential for prey density dependent selective feeding of C. finmarchicus. Results of microplankton counts indicated C. finmarchicus to be omnivorous. Diatoms contributed chiefly to the diet during spring bloom conditions. Despite the high microphytoplankton biomass during the spring bloom (Exp. 1), ciliates were selected positively by C. finmarchicus when the ciliate biomass exceeded 6.5 μg C L− 1. A selection in favor of large conic ciliates such as Laboea sp. and Strombidium conicum was indicated by positive selectivity indices. Ciliates were throughout positively selected by C. finmarchicus during Exp. 2, and selectivity indices indicated a negative selection of diatoms. The results from Exp. 3 showed that C. finmarchicus has the ability to switch from dinoflagellates to ciliates as sole food source, even if the dinoflagellate was offered in surplus. This suggests that other factors, such as nutrition may be of significance for the feeding selectivity of C. finmarchicus.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-26
    Description: Highlights: • A full-scale 5 year experimental study of ecosystem responses to increased nutrients. • Concentrations of DIN and DIP did not respond positively to increased nutrient input. • Concentrations of PON and POP and phytoplankton biomass responded positively. • PON is suggested as credible indicator for chemical and ecological state. • A general scientific concept for managing nutrient input to coastal waters is presented. Abstract: The objective of this study was to quantify chemical and biological responses to an experimentally increased nutrient input to an open coastal planktonic ecosystem and to contribute to a scientific concept and credible indicators for managing nutrient supply to coastal waters. Data were derived in a 5 year fertilisation experiment of a tidal driven coastal lagoon at the outer coast off Central Norway (63°36’ N, 9°33’ E), with a surface area of 275.000 m2, volume of 5.5 mill m3, mean depth of 22 m and a water exchange rate of 0.19 day- 1. The lagoon was fertilised in the summer season 1998 and 1999, while summer seasons 1996-97 and 2000 and inflowing water were used as unfertilised references. Most measured chemical and biological variables showed linear responses with an increasing loading rate of inorganic N and P (LN and LP, respectively). PON, POP and POC (〈 200 μm) responded significantly (P 〈 0.05) as did chlorophyll a and phytoplankton C. DIN and DIP remained, however, constant and independent of LN and LP, respectively (P 〉 0.05) as did heterotrophic biomass (P 〉 0.05). We evaluate the response variables assuming a stepwise incorporation process of nutrients in the planktonic ecosystem and how that will interact with biological response times and water dilution rates. We suggest that PON is a credible indicator of both chemical and ecological states of the planktonic ecosystem and that natural background and upper critical concentrations are 46 and 88 mg PON m- 3, respectively. The study was supported by data from mesocosms. We discuss the scientific relevance of our suggestions, how results can be extrapolated to a broader geographical scale, and we propose a science-based concept for the management of nutrient emission to open coastal waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...