GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (5)
Publisher
Language
Years
Year
  • 1
    Type of Medium: Book
    Pages: 22 S , Ill
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338, https://doi.org/10.1111/ppl.12096
    Publication Date: 2024-03-15
    Description: Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol/l CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol/l. Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, intracellular pool per cell; Carbon, intracellular pool per cell, standard deviation; Carbon-14, organic; Carbon-14, organic, standard deviation; Carbon-14 incorporation per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide/Bicarbonate uptake ratio; Carbon dioxide/Bicarbonate uptake ratio, standard deviation; Carbon incorporation rate per cell; Cell biovolume; Cell density; Chlorophyll a per cell; Chromista; Emiliania huxleyi; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haptophyta; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Potentiometric; Potentiometric titration; Ratio; Replicate; Salinity; Single species; Species; Table; Temperature, water; Thalassiosira weissflogii; Time in minutes; Time in seconds; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 7443 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-22
    Description: Third Symposium on the Ocean in a High-CO2 World
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-22
    Description: Third Symposium on the Ocean in a High-CO2 World
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 123 (2013): 322–337, doi:10.1016/j.gca.2013.06.011.
    Description: Despite the importance of diatoms in regulating climate and the existence of large opal-containing sediments in key air-ocean exchange areas, most geochemical proxy records are based on carbonates. Among them, Boron (B) content and isotopic composition have been widely used to reconstruct pH from foraminifera and coral fossils. We assessed the possibility of a pH/CO2 seawater concentration control on B content in diatom opal to determine whether or not frustule B concentrations could be used as a pH proxy or to clarify algae physiological responses to acidifying pH. We cultured two well-studied diatom species, Thalassiosira pseudonana and Thalassiosira weissflogii at varying pH conditions and determined Si and C quotas. Frustule B content was measured by both laser-ablation inductively coupled mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS/ion probe). For both species, frustules grown at higher pH have higher B contents and higher Si requirements per fixed C. If this trend is representative of diatom silicification in a future more acidic ocean, it could contribute to changes in the efficiency of diatom ballasting and C export, as well as changes in the contribution of diatoms relative to other phytoplankton groups in Si-limited regions. If B enters the cell through the same transporter employed for HCO3− uptake, an increased HCO3− requirement with decreasing CO2 concentrations (higher pH), and higher B(OH)4/HCO3− ratios would explain the observed increase in frustule B content with increasing pH. The mechanism of B transport from the site of uptake to the site of silica deposition is unknown, but may occur via silicon transport vesicles, in which B(OH)4− may be imported for B detoxification and/or as part of a pH regulation strategy either though Na-dependent B(OH)4−/Cl− antiport or B(OH)4−/H+ antiport. B deposition in the silica matrix may occur via substitution of a B(OH)4− for a negatively charged SiO− formed during silicification. With the current analytical precision, B content of frustules is unlikely to resolve ocean pH with a precision of paleoceanographic interest. However, if frustule B content was controlled mainly by HCO3− uptake for photosynthesis, which appears to show a threshold behavior, then measurements of B content might reveal the varying importance of active HCO3− acquisition mechanisms of diatoms in the past.
    Description: This work was funded by the European Community under the project ERC-STG-240222-PACE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...